Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (1) : 1-20    https://doi.org/10.1007/s11706-018-0409-0
REVIEW ARTICLE
Graphene: from synthesis to engineering to biosensor applications
Jagpreet SINGH1, Aditi RATHI2, Mohit RAWAT1, Manoj GUPTA3()
1. Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
2. Intelligent Material Pvt. Ltd. (Nanoshel LLC), Derabassi-140507, Punjab, India
3. Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
 Download: PDF(748 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Graphene is a fascinating material of recent origin whose first isolation was being made possible through micromechanical cleavage of a graphite crystal. Owing to its fascinating properties, graphene has garnered significant attention in the research community for multiple applications. A number of methods have been employed for the synthesis of single-layer and multi-layer graphene. The extraordinary properties of graphene such as its Hall effect at room temperature, high surface area, tunable bandgap, high charge mobility and excellent electrical, conducting and thermal properties allow for the development of sensors of various types and also opened the doors for its use in nanoelectronics, supercapacitors and batteries. Biological aspects of graphene have also been investigated with particular emphasis on its toxicity and drug delivery. In this review, many of the salient aspects of graphene, such as from synthesis to its applications, primarily focusing on sensor applications which are of current interest, are covered.

Keywords graphene      nanoelectronics      Hall effect      tunable bandgap      supercapacitors      sensors      catalysis     
Corresponding Author(s): Manoj GUPTA   
Online First Date: 23 January 2018    Issue Date: 07 March 2018
 Cite this article:   
Jagpreet SINGH,Aditi RATHI,Mohit RAWAT, et al. Graphene: from synthesis to engineering to biosensor applications[J]. Front. Mater. Sci., 2018, 12(1): 1-20.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0409-0
https://academic.hep.com.cn/foms/EN/Y2018/V12/I1/1
Fig.1  Schematic diagram showing that graphene can be wrapped to form 0D fullerenes, 1D CNTs, or stacked to form 3D graphite. Reproduced from Ref. [14].
Fig.2  Schematic diagram showing the band structure of graphene in absence and presence of electric field: (a) monolayer and (b) bilayer graphene. (c) When an electric field E is applied perpendicular to the bilayer, a bandgap is opened in bilayer graphene, whose size (2?) is tunable by the electric field. Reproduced from Ref. [36].
Fig.3  Schematic diagram showing the representative transmittance of different graphene layers. UV-vis spectra roll-to-roll, layer-by-layer transferred graphene films on quartz substrates. The inset shows the UV spectra of graphene films with and without HNO3 doping. Reproduced from Ref. [39].
Fig.4  Schematic diagrams: (a) High-resolution scanning electron microscopy image of the suspended graphene flakes; (b) Schematic of the experimental setup for measuring the thermal conductivity of graphene. Reproduced from Ref. [49].
Fig.5  Schematic diagram showing steps of?the mechanical exfoliation of graphene from graphite using scotch tape: (a) adhesive side of the tape is pressed onto the HOPG; (b) tape is peeled away with graphite layer sticking on it; (c) newly made surface is again pressed along the pristine adhesive; (d) Si/SiO2 substrate softly pressed against the taped to get the graphite layers. Reproduced from Ref. [50].
Fig.6  Schematic diagrams: (a)?GICs prepared by the intercalation of alkali metal ions;? (b)?direct exfoliation and noncovalent functionalization and solubilization of graphene by using the potassium salt of coronene tetracarboxylic acid (PCT). Reproduced from Ref. [58].
Fig.7  Schematics of the exfoliation mechanism for the peroxide electrolyte. Reproduced from Ref. [59].
Fig.8  Schematic illustration of the thermal decomposition method. Reproduced from Ref. [60].
Fig.9  Schematic showing the steps in Hummers method. Reproduced from Ref. [61].
Method Advantages Disadvantages
Mechanical exfoliation • low cost and easy
• no expensive equipment needed
• uneven films
• labour intensive
• not suitable for large-scale production
Epitaxial growth • most even films (of any method)
• large-scale area
• difficult control of morphology and adsorption energy
• high-temperature process
Graphene oxide • easy to upscale
• versatile handling of the suspension
• rapid process
• fragile stability of the colloidal dispersion
• reduction to graphene is only partial
Tab.1  Advantages and disadvantages of techniques currently used to produce graphene [88]
Application Purposes Graphene/polymer composites used Refs.
Drug delivery • CPT delivery • GO–PVA–CPT
• CNT–PVA–CPT
• PNI–PAM–GS
[8990]
Gene delivery • anticancer drug delivery
• DNA transfection
• CPT drug and report
• DNA delivery
• Si RNA and DOX delivery
• NGO–PEG
• PEI–GO
• GO–chitosan
• GO–PEI
[9196]
Cancer therapy • tumor ablation
• multifunctional cancer therapy
• hepatocarcinoma diagonosis
• PEG–NGS
• Ce6 loaded PEG–GO
• GO–PEG–FA/Gd/DOX
[9799]
Bio-imaging • cell imaging • NGO–PEG
• GO–PEI
[100]
Actuators • artificial muscles • graphene/PDMS [101]
Tab.2  Applications of polymer–graphene nanocomposites in biomedical field [89101]
Nanocarbon material Analytes Method Sensor Sensing parameter Refs.
Carbon black ethanol vapors electrical resistance gas sensor sensitivity, 27.7% [123]
Carbon nanofibers ethanol vapors electrical resistance gas sensor sensitivity, 40% [123]
MWCNTs ethanol vapors electrical resistance gas sensor sensitivity, 47.4% [123]
SWCNTs DNAs DPV b) biosensor detection limit, 1.43 μmol/L [124]
Graphene uric acid amperometry biosensor detection limit, 0.132 μmol/L [125]
Buckypaper–SWCNTs glucose amperometry biosensor detection limit, 0.022 mmol/L [126]
Nitrogen-doped graphene uric acid DPV b) biosensor detection limit, 0.045 μmol/L [127]
Graphene–Pt ascorbic acid DPV b) biosensor detection limit, 0.03 μmol/L [128]
MWCNTs cholesterol amperometry biosensor detection limit, 0.2 mmol/L [129]
Graphene–Au nanorod NADH a) amperometry biosensor detection limit, 1.5 μmol/L [130]
SWCNTs dopamine DPV b) biosensor detection limit, 48 nmol/L [131]
Tab.3  Different nanocarbon materials used in sensor applications [123131]
Fig.10  Graphene-based electrochemical sensors for DNA, protein and cancer cell detection. Reproduced from Ref. [133].
Fig.11  Schematic diagram of the RGO device. An RGO sheet bridges the source and drains electrodes, which closes the circuit. Reproduced from Ref. [135].
Fig.12  Schematic of the VG-based FET immunosensor. Reproduced from Ref. [156].
Fig.13  Schematic of the protocol and Nyquist plots of the graphene surface implemented in the presence of the probe, complementary target, 1-mismatched sequence and a non-complementary sequence. Reproduced from Ref. [158].
Fig.14  Schematic of (a) the novel gas-sensing platform of an RGO sheet decorated with SnO2 NCs and (b) of the sensor testing system. Reproduced from Ref. [160].
Fig.15  Schematic illustration of (a) protocols employed for functionalization of GO with cysteamine and (b) for Hg2+ determination. Reproduced from Ref. [161].
Fig.16  Schematic showing preparation of PBNCs/rGO nanocomposite-based AChE biosensor and the electrocatalytic mechanism for acetylthiocholine oxidation. Reproduced from Ref. [165].
1 Novoselov K S,  Geim A K,  Morozov S V, et al.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896 pmid: 15499015
2 Novoselov K S,  Geim A K,  Morozov S V, et al.. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
https://doi.org/10.1038/nature04233 pmid: 16281030
3 Rao C N R,  Sood A K,  Subrahmanyam K S, et al.. Graphene: the new two-dimensional nanomaterial. Angewandte Chemie International Edition, 2009, 48(42): 7752–7777
https://doi.org/10.1002/anie.200901678 pmid: 19784976
4 Chen J H, Jang  C, Adam S, et al.. Charged-impurity scattering in graphene. Nature Physics, 2008, 4(5): 377–381
https://doi.org/10.1038/nphys935
5 Han M Y, Ozyilmaz B, Zhang Y, et al.. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 2007, 98(20): 206805 (4 pages)
6 Nair R R, Blake  P, Grigorenko A N, et al.. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965 pmid: 18388259
7 Lee C, Wei  X, Kysar J W, et al.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996 pmid: 18635798
8 Wang Y, Huang  Y, Song Y, et al.. Room-temperature ferromagnetism of graphene. Nano Letters, 2009, 9(1): 220–224
https://doi.org/10.1021/nl802810g pmid: 19072314
9 Matte H S S R,  Subrahmanyam K S,  Rao C N R. Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. The Journal of Physical Chemistry C, 2009, 113(23): 9982–9985
https://doi.org/10.1021/jp903397u
10 Peigney A, Laurent  C, Flahaut E, et al.. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507–514
https://doi.org/10.1016/S0008-6223(00)00155-X
11 Rao C N R,  Sood A K,  Voggu R, et al.. Some novel attributes of graphene. The Journal of Physical Chemistry Letters, 2010, 1(2): 572–580
https://doi.org/10.1021/jz9004174
12 Das B, Voggu  R, Rout C S, et al.. Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chemical Communications, 2008, (41): 5155–5157
https://doi.org/10.1039/b808955h pmid: 18956053
13 Rao C N R,  Voggu R. Charge-transfer with graphene and nanotubes. Materials Today, 2010, 13(9): 34–40
https://doi.org/10.1016/S1369-7021(10)70163-2
14 Geim A K, Novoselov  K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849 pmid: 17330084
15 Butler K T, Frost  J M, Walsh  A. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Materials Horizons, 2015, 2(2): 228–231
https://doi.org/10.1039/C4MH00174E
16 Son D R, Raghu  A V, Reddy  K R, et al.. Compatibility of thermally reduced graphene with polyesters. Journal of Macromolecular Science Part B, 2016, 55(11): 1099–1110
https://doi.org/10.1080/00222348.2016.1242529
17 Hassan M, Reddy  K R, Haque  E, et al.. High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. Journal of Colloid and Interface Science, 2013, 410: 43–51
https://doi.org/10.1016/j.jcis.2013.08.006 pmid: 24034217
18 Reddy K R, Sin  B C, Yoo  C H, et al.. A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Materialia, 2008, 58(11): 1010–1013
https://doi.org/10.1016/j.scriptamat.2008.01.047
19 Cahill D G, Braun  P V, Chen G, et al.. Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1: 011305 
https://doi.org/10.1063/1.4832615
20 Stenzel M H, Barner-Kowollik  C, Davis T P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(8): 2363–2375
https://doi.org/10.1002/pola.21334
21 Choi S H, Kim  D H, Raghu  A V, et al.. Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. Journal of Macromolecular Science Part B, 2012, 51(1): 197–207
https://doi.org/10.1080/00222348.2011.583193
22 Hassan M, Reddy  K R, Haque  E, et al.. Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Composites Science and Technology, 2014, 98: 1–8
https://doi.org/10.1016/j.compscitech.2014.04.007
23 Zhong Y J, Xie  G Y, Sui  G X, et al.. Poly(ether ether ketone) composites reinforced by short carbon fibers and zirconium dioxide nanoparticles: mechanical properties and sliding wear behavior with water lubrication. Journal of Applied Polymer Science, 2011, 119: 1711–1720 
https://doi.org/10.1002/app.32847
24 Reddy K R, Sin  B C, Ryu  K S, et al.. In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity. Synthetic Metals, 2009, 159(19–20): 1934–1939
https://doi.org/10.1016/j.synthmet.2009.06.018
25 Reddy K R, Gomes  V G, Hassan  M. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Materials Research Express, 2014, 1(1): 015012
https://doi.org/10.1088/2053-1591/1/1/015012
26 Lee Y R, Kim  S C, Lee  H, et al.. Graphite oxides as effective fire retardants of epoxy resin. Macromolecular Research, 2011, 19(1): 66–71
https://doi.org/10.1007/s13233-011-0106-7
27 Reddy K R, Hassan  M, Gomes V G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Applied Catalysis A: General, 2015, 489: 1–16
https://doi.org/10.1016/j.apcata.2014.10.001
28 Khan M U, Reddy  K R, Snguanwongchai  T, et al.. Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid and Polymer Science, 2016, 294(10): 1599–1610
https://doi.org/10.1007/s00396-016-3922-7
29 Bolotin K I, Sikes  K J, Jiang  Z, et al.. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355
https://doi.org/10.1016/j.ssc.2008.02.024
30 Nair R R, Blake  P, Grigorenko A N, et al.. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965 pmid: 18388259
31 Singh V, Joung  D, Zhai L, et al.. Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56(8): 1178–1271
https://doi.org/10.1016/j.pmatsci.2011.03.003
32 Zhang Y, Tan  Y W, Stormer  H L, et al.. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204
https://doi.org/10.1038/nature04235 pmid: 16281031
33 Novoselov K S,  Jiang D,  Schedin F, et al.. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
https://doi.org/10.1073/pnas.0502848102 pmid: 16027370
34 Novoselov K S,  Jiang Z,  Zhang Y, et al.. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
https://doi.org/10.1126/science.1137201 pmid: 17303717
35 Novoselov K S,  McCann E,  Morozov S V, et al.. Unconventional quantum Hall effect and Berry’s phase of 2p in bilayer graphene. Nature Physics, 2006, 2: 177–180
https://doi.org/10.1038/nphys245
36 Oostinga J B, Heersche  H B, Liu  X, et al.. Gate-induced insulating state in bilayer graphene devices. Nature Materials, 2008, 7(2): 151–157
https://doi.org/10.1038/nmat2082 pmid: 18059274
37 Becerril H A, Mao  J, Liu Z, et al.. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3): 463–470
https://doi.org/10.1021/nn700375n pmid: 19206571
38 Di Bartolomeo A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports, 2016, 606: 1–58
https://doi.org/10.1016/j.physrep.2015.10.003
39 Bae S, Kim  H, Lee Y, et al.. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578
https://doi.org/10.1038/nnano.2010.132 pmid: 20562870
40 Tong J, Muthee  M, Chen S Y, et al.. Antenna enhanced graphene THz emitter and detector. Nano Letters, 2015, 15(8): 5295–5301
https://doi.org/10.1021/acs.nanolett.5b01635 pmid: 26218887
41 Sensale-Rodriguez B,  Yan R, Kelly  M M, et al.. Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 2012, 3: 780
https://doi.org/10.1038/ncomms1787 pmid: 22510685
42 Rothberg L J, Lovinger  A J. Status of and prospects for organic electroluminescence. Journal of Materials Research, 1996, 11(12): 3174–3187
https://doi.org/10.1557/JMR.1996.0403
43 Eda G, Lin  Y Y, Mattevi  C, et al.. Blue photoluminescence from chemically derived graphene oxide. Advanced Materials, 2010, 22(4): 505–509
https://doi.org/10.1002/adma.200901996 pmid: 20217743
44 Yu T, Ni  Z, Du C, et al.. Raman mapping investigation of graphene on transparent flexible substrate: The strain effect. The Journal of Physical Chemistry C, 2008, 112(33): 12602–12605
https://doi.org/10.1021/jp806045u
45 Ni Z H, Chen  W, Fan X F, et al.. Raman spectroscopy of epitaxial graphene on a SiC substrate. Physical Review B, 2008, 77: 11405 
https://doi.org/10.1103/PhysRevB.77.115416
46 Ni Z H, Wang  H M, Ma  Y, et al.. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano, 2008, 2(5): 1033–1039
https://doi.org/10.1021/nn800031m pmid: 19206501
47 Haldane F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Physical Review Letters, 1988, 61(18): 2015–2018
https://doi.org/10.1103/PhysRevLett.61.2015 pmid: 10038961
48 Klemens P G. Theory of thermal conduction in thin ceramic films. International Journal of Thermophysics, 2001, 22(1): 265–275
https://doi.org/10.1023/A:1006776107140
49 Ghosh S, Calizo  I, Teweldebrhan D, et al.. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008, 92: 151911 (3 pages) 
https://doi.org/10.1063/1.2907977
50 Novoselov K S,  Castro Neto A H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012, 146: 014006
https://doi.org/10.1088/0031-8949/2012/T146/014006
51 Hiura H, Ebbesen  T W, Fujita  J, et al.. Role of sp3 defect structures in graphite and carbon nanotubes. Nature, 1994, 367(6459): 148–151
https://doi.org/10.1038/367148a0
52 Ebbesen T W, Hiura  H. Graphene in 3-dimensions: Towards graphite origami. Advanced Materials, 1995, 7(6): 582–586
https://doi.org/10.1002/adma.19950070618
53 Bernhardt T M,  Kaiser B,  Rademann K. Formation of superperiodic patterns on highly oriented pyrolytic graphite by manipulation of nanosized graphite sheets with the STM tip. Surface Science, 1998, 408(1–3): 86–94
https://doi.org/10.1016/S0039-6028(98)00152-6
54 Atamny F, Spillecke  O, Schlogl R. On the STM imaging contrast of graphite: towards a “true” atomic resolution. Physical Chemistry Chemical Physics, 1999, 1(17): 4113–4118
https://doi.org/10.1039/a904657g
55 Lu X, Yu  M, Huang H, et al.. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 1999, 10(3): 269–272
https://doi.org/10.1088/0957-4484/10/3/308
56 Roy H V, Kallinger  C, Sattler K. Study of single and multiple foldings of graphitic sheets. Surface Science, 1998, 407(1–3): 1–6
https://doi.org/10.1016/S0039-6028(97)01032-7
57 Dresselhaus M S,  Dresselhaus G. Intercalation compounds of graphite. Advances in Physics, 1981, 30(2): 139–326
https://doi.org/10.1080/00018738100101367
58 Viculis L M, Mack  J J, Mayer  O M, et al.. Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry, 2005, 15(9): 974
https://doi.org/10.1039/b413029d
59 Rao K S, Senthilnathan  J, Liu Y F, et al.. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Scientific Reports, 2014, 4(1): 4237
https://doi.org/10.1038/srep04237 pmid: 24577336
60 Hibino H, Kageshima  H, Nagase M. Graphene growth on silicon carbide. NTT Technical Review, 2009, 615–617: 199–202
61 Ciszewski M, Mianowski  A. Survey of graphite oxidation methods using oxidizing mixtures in inorganic acids. Chemik, 2013, 67: 267–274
62 Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
63 Dreyer D R, Park  S, Bielawski C W, et al.. The chemistry of graphene oxide. Chemical Society Reviews, 2010, 39(1): 228–240
https://doi.org/10.1039/B917103G pmid: 20023850
64 Stankovich S, Dikin  D A, Piner  R D, et al.. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
https://doi.org/10.1016/j.carbon.2007.02.034
65 Shin H J, Kim  K K, Benayad  A, et al.. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 2009, 19(12): 1987–1992
https://doi.org/10.1002/adfm.200900167
66 Pham V H, Cuong  T V, Nguyen-Phan  T D, et al.. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chemical Communications, 2010, 46(24): 4375–4377
https://doi.org/10.1039/c0cc00363h pmid: 20480069
67 Zhou X, Zhang  J, Wu H, et al.. Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene. The Journal of Physical Chemistry C, 2011, 115(24): 11957–11961
https://doi.org/10.1021/jp202575j
68 Zhu C, Guo  S, Fang Y, et al.. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4(4): 2429–2437
https://doi.org/10.1021/nn1002387 pmid: 20359169
69 Zhang J, Yang  H, Shen G, et al.. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 2010, 46(7): 1112–1114
https://doi.org/10.1039/B917705A pmid: 20126730
70 Wang X, Yang  J, Park J, et al.. Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C, 2008, 112(22): 8192–8195
https://doi.org/10.1021/jp710931h
71 Fan X, Peng  W, Li Y, et al.. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Advanced Materials, 2008, 20(23): 4490–4493
https://doi.org/10.1002/adma.200801306
72 Amarnath C A, Hong  C E, Kim  N H, et al.. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon, 2011, 49(11): 3497–3502
https://doi.org/10.1016/j.carbon.2011.04.048
73 Guo H L, Wang  X F, Qian  Q Y, et al.. A green approach to the synthesis of graphene nanosheets. ACS Nano, 2009, 3(9): 2653–2659
https://doi.org/10.1021/nn900227d pmid: 19691285
74 Sundaram R S, Gómez-Navarro  C, Balasubramanian K, et al.. Electrochemical modification of graphene. Advanced Materials, 2008, 20(16): 3050–3053
https://doi.org/10.1002/adma.200800198
75 Compton O C, Jain  B, Dikin D A, et al.. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano, 2011, 5(6): 4380–4391
https://doi.org/10.1021/nn1030725 pmid: 21473647
76 Kim K S, Zhao  Y, Jang H, et al.. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710
https://doi.org/10.1038/nature07719 pmid: 19145232
77 Kwon S Y, Ciobanu  C V, Petrova  V, et al.. Growth of semiconducting graphene on palladium. Nano Letters, 2009, 9(12): 3985–3990
https://doi.org/10.1021/nl902140j pmid: 19995079
78 Sutter P W, Flege  J I, Sutter  E A. Epitaxial graphene on ruthenium. Nature Materials, 2008, 7(5): 406–411
https://doi.org/10.1038/nmat2166 pmid: 18391956
79 Coraux J, N’Diaye  A T, Busse  C, et al.. Structural coherency of graphene on Ir(111). Nano Letters, 2008, 8(2): 565–570
https://doi.org/10.1021/nl0728874 pmid: 18189442
80 Li X, Cai  W, An J, et al.. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
https://doi.org/10.1126/science.1171245 pmid: 19423775
81 Reina A, Jia  X, Ho J, et al.. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35
https://doi.org/10.1021/nl801827v pmid: 19046078
82 Wang J J, Zhu  M Y, Outlaw  R A, et al.. Free-standing subnanometer graphite sheets. Applied Physics Letters, 2004, 85(7): 1265–1267
https://doi.org/10.1063/1.1782253
83 Wang J, Zhu  M, Outlaw R A, et al.. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon, 2004, 42(14): 2867–2872
https://doi.org/10.1016/j.carbon.2004.06.035
84 Zhu M, Wang  J, Holloway B C, et al.. A mechanism for carbon nanosheet formation. Carbon, 2007, 45(11): 2229–2234
https://doi.org/10.1016/j.carbon.2007.06.017
85 Cano-Márquez A G,  Rodríguez-Macías F J, Campos-Delgado J, et al.. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Letters, 2009, 9(4): 1527–1533
https://doi.org/10.1021/nl803585s pmid: 19260705
86 Jiao L, Zhang  L, Wang X, et al.. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880
https://doi.org/10.1038/nature07919 pmid: 19370031
87 Kosynkin D V, Higginbotham  A L, Sinitskii  A, et al.. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876
https://doi.org/10.1038/nature07872 pmid: 19370030
88 Soldano C, Mahmood  A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48(8): 2127–2150
https://doi.org/10.1016/j.carbon.2010.01.058
89 Sahoo N G, Bao  H, Pan Y, et al.. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chemical Communications, 2011, 47(18): 5235–5237
https://doi.org/10.1039/c1cc00075f pmid: 21451845
90 Pan Y, Bao  H, Sahoo N G, et al.. Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Advanced Functional Materials, 2011, 21(14): 2754–2763
https://doi.org/10.1002/adfm.201100078
91 Liu Z, Robinson  J T, Sun  X, et al.. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 2008, 130(33): 10876–10877
https://doi.org/10.1021/ja803688x pmid: 18661992
92 Sun X, Liu  Z, Welsher K, et al.. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212
https://doi.org/10.1007/s12274-008-8021-8 pmid: 20216934
93 Feng L, Zhang  S, Liu Z. Graphene based gene transfection. Nanoscale, 2011, 3(3): 1252–1257
https://doi.org/10.1039/c0nr00680g pmid: 21270989
94 Chen B, Liu  M, Zhang L, et al.. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. Journal of Materials Chemistry, 2011, 21(21): 7736
https://doi.org/10.1039/c1jm10341e
95 Bao H, Pan  Y, Ping Y, et al.. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11): 1569–1578
https://doi.org/10.1002/smll.201100191 pmid: 21538871
96 Zhang L, Lu  Z, Zhao Q, et al.. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011, 7(4): 460–464
https://doi.org/10.1002/smll.201001522 pmid: 21360803
97 Yang K, Zhang  S, Zhang G, et al.. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318–3323
https://doi.org/10.1021/nl100996u pmid: 20684528
98 Tian B, Wang  C, Zhang S, et al.. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009
https://doi.org/10.1021/nn201560b pmid: 21815655
99 Shen A, Li  D, Cai X, et al.. Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment. Journal of Biomedical Materials Research Part A, 2012, 100A(9): 2499–2506
100 Kim H, Namgung  R, Singha K, et al.. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chemistry, 2011, 22(12): 2558–2567
https://doi.org/10.1021/bc200397j pmid: 22034966
101 Min K, Jung  J Y, Han  T H, et al.. Graphene electrodes for artificial muscles. Molecular Crystals and Liquid Crystals, 2011, 539(1): 260–265 
https://doi.org/10.1080/15421406.2011.566507
102 Cao Y C, Wei  W, Liu J, et al.. The preparation of graphene reinforced poly(vinyl alcohol) antibacterial nanocomposite thin film. International Journal of Polymer Science, 2015: 407043 (7 pages) 
https://doi.org/10.1155/2015/407043
103 Zhao Y, Arowo  M, Wu W, et al.. Polyaniline/graphene nanocomposites synthesized by in situ high gravity chemical oxidative polymerization for supercapacitor. Journal of Industrial and Engineering Chemistry, 2015, 25: 280–287
https://doi.org/10.1016/j.jiec.2014.11.005
104 Lee T, Yun  T, Park B, et al.. Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: importance of establishing intimate electronic contact through nanoscale blending. Journal of Materials Chemistry, 2012, 22(39): 21092
https://doi.org/10.1039/c2jm33111j
105 Lee J K, Song  S, Kim B. Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polymer Composites, 2012, 33(8): 1263–1273
https://doi.org/10.1002/pc.22251
106 Chen L Y, Konishi  H, Fehrenbacher A, et al.. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia, 2012, 67(1): 29–32
https://doi.org/10.1016/j.scriptamat.2012.03.013
107 Wang J, Li  Z, Fan G, et al.. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66(8): 594–597
https://doi.org/10.1016/j.scriptamat.2012.01.012
108 Zhou C, Szpunar  J A, Cui  X. Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Applied Materials & Interfaces, 2016, 8(24): 15232–15241
https://doi.org/10.1021/acsami.6b02607 pmid: 27248316
109 Gómez-Navarro C,  Burghard M,  Kern K. Elastic properties of chemically derived single graphene sheets. Nano Letters, 2008, 8(7): 2045–2049
https://doi.org/10.1021/nl801384y pmid: 18540659
110 Koller A. Structure and Properties of Ceramics. Amsterdam: Elsevier Publishing Company, 1994
111 Sternitzke M. Structural ceramic nanocomposites. Journal of the European Ceramic Society, 1997, 17(9): 1061–1082
https://doi.org/10.1016/S0955-2219(96)00222-1
112 Choi S M, Awaji  H. Nanocomposites — a new material design concept. Science and Technology of Advanced Materials, 2005, 6(1): 2–10
https://doi.org/10.1016/j.stam.2004.06.002
113 Wu P, Lv  H, Peng T, et al.. Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. Scientific Reports, 2014, 4(1): 3968
https://doi.org/10.1038/srep03968 pmid: 24495943
114 Eda G, Chhowalla  M. Graphene-based composite thin films for electronics. Nano Letters, 2009, 9(2): 814–818
https://doi.org/10.1021/nl8035367 pmid: 19173637
115 Mohammad-Rezaei R, Razmi  H, Jabbari M. Graphene ceramic composite as a new kind of surface-renewable electrode: application to the electroanalysis of ascorbic acid. Mikrochimica Acta, 2014, 181(15–16): 1879–1885
https://doi.org/10.1007/s00604-014-1238-1
116 Gutierrez-Gonzalez C F,  Smirnov A,  Centeno A, et al.. Wear behavior of graphene/alumina composite. Ceramics International, 2015, 41(6): 7434–7438
https://doi.org/10.1016/j.ceramint.2015.02.061
117 Zhou M, Lin  T, Huang F, et al.. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Advanced Functional Materials, 2013, 23(18): 2263–2269
https://doi.org/10.1002/adfm.201202638
118 Zhang Y, Ali  S F, Dervishi  E, et al.. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6): 3181–3186
https://doi.org/10.1021/nn1007176 pmid: 20481456
119 Fan H, Wang  L, Zhao K, et al.. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 2010, 11(9): 2345–2351
https://doi.org/10.1021/bm100470q pmid: 20687549
120 Xu S, Zhang  Z, Chu M. Long-term toxicity of reduced graphene oxide nanosheets: Effects on female mouse reproductive ability and offspring development. Biomaterials, 2015, 54: 188–200
https://doi.org/10.1016/j.biomaterials.2015.03.015 pmid: 25907052
121 Jennifer M, Maciej  W. Nanoparticle technology as a double-edged sword: cytotoxic, genotoxic and epigenetic effects on living cells. Journal of Biomaterials and Nanobiotechnology, 2013, 4(01): 53–63
https://doi.org/10.4236/jbnb.2013.41008
122 Wu W, Yan  L, Wu Q, et al.. Evaluation of the toxicity of graphene oxide exposure to the eye. Nanotoxicology, 2016, 10(9): 1329–1340
https://doi.org/10.1080/17435390.2016.1210692 pmid: 27385068
123 Boruta R,Olejnik R, Slobodian P, et al.. Different kinds of carbon-based material for resistive gas sensing. Key Engineeing Materials, 2013, 543: 269–272
124 Li J, Zhang  Y, Yang T, et al.. DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin. Materials Science and Engineering C, 2009, 29(8): 2360–2364 
https://doi.org/10.1016/j.msec.2009.06.006
125 Du J, Yue  R, Yao Z, et al.. Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419(2): 94–99
https://doi.org/10.1016/j.colsurfa.2012.11.060
126 Sheng Z H, Zheng  X Q, Xu  J Y, et al.. Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors & Bioelectronics, 2012, 34(1): 125–131
https://doi.org/10.1016/j.bios.2012.01.030 pmid: 22342696
127 Papa H, Gaillard  M, Gonzalez L, et al.. Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors. Biosensors, 2014, 4(4): 449–460
https://doi.org/10.3390/bios4040449 pmid: 25587433
128 Sun C L, Lee  H H, Yang  J M, et al.. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosensors & Bioelectronics, 2011, 26(8): 3450–3455
https://doi.org/10.1016/j.bios.2011.01.023 pmid: 21324669
129 Guo M, Chen  J, Li J, et al.. Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis, 2004, 16(23): 1992–1998
https://doi.org/10.1002/elan.200403053
130 Li L, Lu  H, Deng L. A sensitive NADH and ethanol biosensor based on graphene–Au nanorods nanocomposites. Talanta, 2013, 113: 1–6
https://doi.org/10.1016/j.talanta.2013.03.074 pmid: 23708615
131 Habibi B, Jahanbakhshi  M, Pournaghi-Azar M H. Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon-ceramic electrode by differential pulse voltammetry. Electrochimica Acta, 2011, 56(7): 2888–2894
https://doi.org/10.1016/j.electacta.2010.12.079
132 Liu Y, Dong  X, Chen P. Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 2012, 41(6): 2283–2307
https://doi.org/10.1039/C1CS15270J pmid: 22143223
133 Goenka S, Sant  V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 2014, 173: 75–88
https://doi.org/10.1016/j.jconrel.2013.10.017 pmid: 24161530
134 Bo Z, Mao  S, Han Z J, et al.. Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews, 2015, 44(8): 2108–2121
https://doi.org/10.1039/C4CS00352G pmid: 25711336
135 Lu G, Ocola  L E, Chen  J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 2009, 20(44): 445502
https://doi.org/10.1088/0957-4484/20/44/445502 pmid: 19809107
136 Lu G, Huebner  K L, Ocola  L E, et al.. Gas sensors based on tin oxide nanoparticles synthesized from a mini-arc plasma source. Journal of Nanomaterials, 2006, (1): 20
https://doi.org/10.1155/JNM/2006/60828
137 Lei N, Li  P, Xue W, et al.. Simple graphene chemiresistors as pH sensors: fabrication and characterization. Measurement Science & Technology, 2011, 22(10): 107002
https://doi.org/10.1088/0957-0233/22/10/107002
138 Bartolomeo A D, Luongo G, Giubileo  F, et al.. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials, 2017, 4(2): 025075
139 Zhang W, Huang  J K, Chen  C H, et al.. High-gain phototransistors based on a CVD MoS2 monolayer. Advanced Materials, 2013, 25(25): 3456–3461
https://doi.org/10.1002/adma.201301244 pmid: 23703933
140 Di Bartolomeo A,  Genovese L,  Foller T, et al.. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors. Nanotechnology, 2017, 28(21): 214002
https://doi.org/10.1088/1361-6528/aa6d98 pmid: 28471746
141 Koppens F H L,  Mueller T,  Avouris P, et al.. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 2014, 9(10): 780–793
https://doi.org/10.1038/nnano.2014.215 pmid: 25286273
142 Antony J, Grimme  S. Structures and interaction energies of stacked graphene-nucleobase complexes. Physical Chemistry Chemical Physics, 2008, 10(19): 2722–2729
https://doi.org/10.1039/b718788b pmid: 18464987
143 Gowtham S,Scheicher  R H, Ahuja  R, et al.. Physisorption of nucleobases on graphene: Density-functional calculations. Physical Review B, 2007, 76(3): 033401
144 Lin L, Liu  Y, Tang L, et al.. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst, 2011, 136(22): 4732–4737
https://doi.org/10.1039/c1an15610a pmid: 21952074
145 Xu C, Xu  B, Gu Y, et al.. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 2013, 6(5): 1388
https://doi.org/10.1039/c3ee23870a
146 Sun W, Hou  F, Gong S, et al.. Direct electrochemistry and electrocatalysis of hemoglobin on three-dimensional graphene modified carbon ionic liquid electrode. Sensors and Actuators B: Chemical, 2015, 219: 331–337
https://doi.org/10.1016/j.snb.2015.05.015
147 Shan C, Yang  H, Song J, et al.. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry, 2009, 81(6): 2378–2382
https://doi.org/10.1021/ac802193c pmid: 19227979
148 Zhou M, Zhai  Y, Dong S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 2009, 81(14): 5603–5613
https://doi.org/10.1021/ac900136z pmid: 19522529
149 Dey R S, Raj  C R. Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Applied Materials & Interfaces, 2013, 5(11): 4791–4798
https://doi.org/10.1021/am400280u pmid: 23721306
150 Cao S, Zhang  L, Chai Y, et al.. Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst. Talanta, 2013, 109: 167–172
https://doi.org/10.1016/j.talanta.2013.02.002 pmid: 23618155
151 Li Z, Xie  C, Wang J, et al.. Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sensors and Actuators B: Chemical, 2015, 208: 505–511
https://doi.org/10.1016/j.snb.2014.11.054
152 Ahn J H, Choi  S J, Han  J W, et al.. Double-gate nanowire field effect transistor for a biosensor. Nano Letters, 2010, 10(8): 2934–2938
https://doi.org/10.1021/nl1010965 pmid: 20698606
153 Ohno Y, Maehashi  K, Yamashiro Y, et al.. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Letters, 2009, 9(9): 3318–3322
https://doi.org/10.1021/nl901596m pmid: 19637913
154 Mohanty N, Berry  V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters, 2008, 8(12): 4469–4476
https://doi.org/10.1021/nl802412n pmid: 19367973
155 Mao S, Yu  K, Chang J, et al.. Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Scientific Reports, 2013, 3(1): 1696
https://doi.org/10.1038/srep01696 pmid: 23603871
156 Stine R, Robinson  J T, Sheehan  P E, et al.. Real-time DNA detection using reduced graphene oxide field effect transistors. Advanced Materials, 2010, 22(46): 5297–5300
https://doi.org/10.1002/adma.201002121 pmid: 20872408
157 Bonanni A, Loo  A H, Pumera  M. Graphene for impedimetric biosensing. Trends in Analytical Chemistry, 2012, 37: 12–21
https://doi.org/10.1016/j.trac.2012.02.011
158 Bonanni A, Pumera  M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano, 2011, 5(3): 2356–2361
https://doi.org/10.1021/nn200091p pmid: 21355609
159 Wang J, Kwak  Y, Lee I Y, et al.. Highly responsive hydrogen gas sensing by partially reduced graphite oxide thin films at room temperature. Carbon, 2012, 50(11): 4061–4067
https://doi.org/10.1016/j.carbon.2012.04.053
160 Mao S, Cui  S, Lu G, et al.. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. Journal of Materials Chemistry, 2012, 22(22): 11009
https://doi.org/10.1039/c2jm30378g
161 Sudibya H G, He  Q, Zhang H, et al.. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano, 2011, 5(3): 1990–1994
pmid: 21524119
162 Zhou H, Wang  X, Yu P, et al.. Sensitive and selective voltammetric measurement of Hg2+ by rational covalent functionalization of graphene oxide with cysteamine. Analyst, 2012, 137(2): 305–308
https://doi.org/10.1039/C1AN15793K pmid: 22059229
163 Li S J, Qian  C, Wang K, et al.. Application of thermally reduced graphene oxide modified electrode in simultaneous determination of dihydroxybenzene isomers. Sensors and Actuators B: Chemical, 2012, 174: 441–448
https://doi.org/10.1016/j.snb.2012.08.070
164 Wang Y, Zhang  S, Du D, et al.. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry, 2011, 21(14): 5319–5325
https://doi.org/10.1039/c0jm03441j
165 Zhang L, Zhang  A, Du D, et al.. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale, 2012, 4(15): 4674–4679
https://doi.org/10.1039/c2nr30976a pmid: 22732870
[1] Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors[J]. Front. Mater. Sci., 2020, 14(4): 353-372.
[2] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[3] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[4] Kun YANG, Jinghuan TIAN, Wei QU, Bo LUAN, Ke LIU, Jun LIU, Likui WANG, Junhui JI, Wei ZHANG. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet[J]. Front. Mater. Sci., 2020, 14(2): 221-231.
[5] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[6] Jinxing ZHANG, Kexing HU, Qi OUYANG, Qilin GUI, Xiaonong CHEN. One-step functionalization of graphene via Diels--Alder reaction for improvement of dispersibility[J]. Front. Mater. Sci., 2020, 14(2): 198-210.
[7] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[8] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[9] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[10] Xia HE, Qingchun LIU, Jiajun WANG, Huiling CHEN. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics[J]. Front. Mater. Sci., 2019, 13(3): 305-313.
[11] Ram Sevak SINGH, Anurag GAUTAM, Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
[12] Chaoyuan LIU, Zhongbing HUANG, Ximing PU, Lei SHANG, Guangfu YIN, Xianchun CHEN, Shuang CHENG. Fabrication of carboxylic graphene oxide-composited polypyrrole film for neurite growth under electrical stimulation[J]. Front. Mater. Sci., 2019, 13(3): 258-269.
[13] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[14] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
[15] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed