|
|
|
Graphene: from synthesis to engineering to biosensor applications |
Jagpreet SINGH1, Aditi RATHI2, Mohit RAWAT1, Manoj GUPTA3( ) |
1. Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India 2. Intelligent Material Pvt. Ltd. (Nanoshel LLC), Derabassi-140507, Punjab, India 3. Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore |
|
|
|
|
Abstract Graphene is a fascinating material of recent origin whose first isolation was being made possible through micromechanical cleavage of a graphite crystal. Owing to its fascinating properties, graphene has garnered significant attention in the research community for multiple applications. A number of methods have been employed for the synthesis of single-layer and multi-layer graphene. The extraordinary properties of graphene such as its Hall effect at room temperature, high surface area, tunable bandgap, high charge mobility and excellent electrical, conducting and thermal properties allow for the development of sensors of various types and also opened the doors for its use in nanoelectronics, supercapacitors and batteries. Biological aspects of graphene have also been investigated with particular emphasis on its toxicity and drug delivery. In this review, many of the salient aspects of graphene, such as from synthesis to its applications, primarily focusing on sensor applications which are of current interest, are covered.
|
| Keywords
graphene
nanoelectronics
Hall effect
tunable bandgap
supercapacitors
sensors
catalysis
|
|
Corresponding Author(s):
Manoj GUPTA
|
|
Online First Date: 23 January 2018
Issue Date: 07 March 2018
|
|
| 1 |
Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
pmid: 15499015
|
| 2 |
Novoselov K S, Geim A K, Morozov S V, et al.. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
https://doi.org/10.1038/nature04233
pmid: 16281030
|
| 3 |
Rao C N R, Sood A K, Subrahmanyam K S, et al.. Graphene: the new two-dimensional nanomaterial. Angewandte Chemie International Edition, 2009, 48(42): 7752–7777
https://doi.org/10.1002/anie.200901678
pmid: 19784976
|
| 4 |
Chen J H, Jang C, Adam S, et al.. Charged-impurity scattering in graphene. Nature Physics, 2008, 4(5): 377–381
https://doi.org/10.1038/nphys935
|
| 5 |
Han M Y, Ozyilmaz B, Zhang Y, et al.. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 2007, 98(20): 206805 (4 pages)
|
| 6 |
Nair R R, Blake P, Grigorenko A N, et al.. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965
pmid: 18388259
|
| 7 |
Lee C, Wei X, Kysar J W, et al.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996
pmid: 18635798
|
| 8 |
Wang Y, Huang Y, Song Y, et al.. Room-temperature ferromagnetism of graphene. Nano Letters, 2009, 9(1): 220–224
https://doi.org/10.1021/nl802810g
pmid: 19072314
|
| 9 |
Matte H S S R, Subrahmanyam K S, Rao C N R. Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. The Journal of Physical Chemistry C, 2009, 113(23): 9982–9985
https://doi.org/10.1021/jp903397u
|
| 10 |
Peigney A, Laurent C, Flahaut E, et al.. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507–514
https://doi.org/10.1016/S0008-6223(00)00155-X
|
| 11 |
Rao C N R, Sood A K, Voggu R, et al.. Some novel attributes of graphene. The Journal of Physical Chemistry Letters, 2010, 1(2): 572–580
https://doi.org/10.1021/jz9004174
|
| 12 |
Das B, Voggu R, Rout C S, et al.. Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chemical Communications, 2008, (41): 5155–5157
https://doi.org/10.1039/b808955h
pmid: 18956053
|
| 13 |
Rao C N R, Voggu R. Charge-transfer with graphene and nanotubes. Materials Today, 2010, 13(9): 34–40
https://doi.org/10.1016/S1369-7021(10)70163-2
|
| 14 |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849
pmid: 17330084
|
| 15 |
Butler K T, Frost J M, Walsh A. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Materials Horizons, 2015, 2(2): 228–231
https://doi.org/10.1039/C4MH00174E
|
| 16 |
Son D R, Raghu A V, Reddy K R, et al.. Compatibility of thermally reduced graphene with polyesters. Journal of Macromolecular Science Part B, 2016, 55(11): 1099–1110
https://doi.org/10.1080/00222348.2016.1242529
|
| 17 |
Hassan M, Reddy K R, Haque E, et al.. High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. Journal of Colloid and Interface Science, 2013, 410: 43–51
https://doi.org/10.1016/j.jcis.2013.08.006
pmid: 24034217
|
| 18 |
Reddy K R, Sin B C, Yoo C H, et al.. A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Materialia, 2008, 58(11): 1010–1013
https://doi.org/10.1016/j.scriptamat.2008.01.047
|
| 19 |
Cahill D G, Braun P V, Chen G, et al.. Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1: 011305
https://doi.org/10.1063/1.4832615
|
| 20 |
Stenzel M H, Barner-Kowollik C, Davis T P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(8): 2363–2375
https://doi.org/10.1002/pola.21334
|
| 21 |
Choi S H, Kim D H, Raghu A V, et al.. Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. Journal of Macromolecular Science Part B, 2012, 51(1): 197–207
https://doi.org/10.1080/00222348.2011.583193
|
| 22 |
Hassan M, Reddy K R, Haque E, et al.. Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Composites Science and Technology, 2014, 98: 1–8
https://doi.org/10.1016/j.compscitech.2014.04.007
|
| 23 |
Zhong Y J, Xie G Y, Sui G X, et al.. Poly(ether ether ketone) composites reinforced by short carbon fibers and zirconium dioxide nanoparticles: mechanical properties and sliding wear behavior with water lubrication. Journal of Applied Polymer Science, 2011, 119: 1711–1720
https://doi.org/10.1002/app.32847
|
| 24 |
Reddy K R, Sin B C, Ryu K S, et al.. In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity. Synthetic Metals, 2009, 159(19–20): 1934–1939
https://doi.org/10.1016/j.synthmet.2009.06.018
|
| 25 |
Reddy K R, Gomes V G, Hassan M. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Materials Research Express, 2014, 1(1): 015012
https://doi.org/10.1088/2053-1591/1/1/015012
|
| 26 |
Lee Y R, Kim S C, Lee H, et al.. Graphite oxides as effective fire retardants of epoxy resin. Macromolecular Research, 2011, 19(1): 66–71
https://doi.org/10.1007/s13233-011-0106-7
|
| 27 |
Reddy K R, Hassan M, Gomes V G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Applied Catalysis A: General, 2015, 489: 1–16
https://doi.org/10.1016/j.apcata.2014.10.001
|
| 28 |
Khan M U, Reddy K R, Snguanwongchai T, et al.. Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid and Polymer Science, 2016, 294(10): 1599–1610
https://doi.org/10.1007/s00396-016-3922-7
|
| 29 |
Bolotin K I, Sikes K J, Jiang Z, et al.. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355
https://doi.org/10.1016/j.ssc.2008.02.024
|
| 30 |
Nair R R, Blake P, Grigorenko A N, et al.. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308
https://doi.org/10.1126/science.1156965
pmid: 18388259
|
| 31 |
Singh V, Joung D, Zhai L, et al.. Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56(8): 1178–1271
https://doi.org/10.1016/j.pmatsci.2011.03.003
|
| 32 |
Zhang Y, Tan Y W, Stormer H L, et al.. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204
https://doi.org/10.1038/nature04235
pmid: 16281031
|
| 33 |
Novoselov K S, Jiang D, Schedin F, et al.. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
https://doi.org/10.1073/pnas.0502848102
pmid: 16027370
|
| 34 |
Novoselov K S, Jiang Z, Zhang Y, et al.. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379
https://doi.org/10.1126/science.1137201
pmid: 17303717
|
| 35 |
Novoselov K S, McCann E, Morozov S V, et al.. Unconventional quantum Hall effect and Berry’s phase of 2p in bilayer graphene. Nature Physics, 2006, 2: 177–180
https://doi.org/10.1038/nphys245
|
| 36 |
Oostinga J B, Heersche H B, Liu X, et al.. Gate-induced insulating state in bilayer graphene devices. Nature Materials, 2008, 7(2): 151–157
https://doi.org/10.1038/nmat2082
pmid: 18059274
|
| 37 |
Becerril H A, Mao J, Liu Z, et al.. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2(3): 463–470
https://doi.org/10.1021/nn700375n
pmid: 19206571
|
| 38 |
Di Bartolomeo A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports, 2016, 606: 1–58
https://doi.org/10.1016/j.physrep.2015.10.003
|
| 39 |
Bae S, Kim H, Lee Y, et al.. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578
https://doi.org/10.1038/nnano.2010.132
pmid: 20562870
|
| 40 |
Tong J, Muthee M, Chen S Y, et al.. Antenna enhanced graphene THz emitter and detector. Nano Letters, 2015, 15(8): 5295–5301
https://doi.org/10.1021/acs.nanolett.5b01635
pmid: 26218887
|
| 41 |
Sensale-Rodriguez B, Yan R, Kelly M M, et al.. Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 2012, 3: 780
https://doi.org/10.1038/ncomms1787
pmid: 22510685
|
| 42 |
Rothberg L J, Lovinger A J. Status of and prospects for organic electroluminescence. Journal of Materials Research, 1996, 11(12): 3174–3187
https://doi.org/10.1557/JMR.1996.0403
|
| 43 |
Eda G, Lin Y Y, Mattevi C, et al.. Blue photoluminescence from chemically derived graphene oxide. Advanced Materials, 2010, 22(4): 505–509
https://doi.org/10.1002/adma.200901996
pmid: 20217743
|
| 44 |
Yu T, Ni Z, Du C, et al.. Raman mapping investigation of graphene on transparent flexible substrate: The strain effect. The Journal of Physical Chemistry C, 2008, 112(33): 12602–12605
https://doi.org/10.1021/jp806045u
|
| 45 |
Ni Z H, Chen W, Fan X F, et al.. Raman spectroscopy of epitaxial graphene on a SiC substrate. Physical Review B, 2008, 77: 11405
https://doi.org/10.1103/PhysRevB.77.115416
|
| 46 |
Ni Z H, Wang H M, Ma Y, et al.. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano, 2008, 2(5): 1033–1039
https://doi.org/10.1021/nn800031m
pmid: 19206501
|
| 47 |
Haldane F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Physical Review Letters, 1988, 61(18): 2015–2018
https://doi.org/10.1103/PhysRevLett.61.2015
pmid: 10038961
|
| 48 |
Klemens P G. Theory of thermal conduction in thin ceramic films. International Journal of Thermophysics, 2001, 22(1): 265–275
https://doi.org/10.1023/A:1006776107140
|
| 49 |
Ghosh S, Calizo I, Teweldebrhan D, et al.. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008, 92: 151911 (3 pages)
https://doi.org/10.1063/1.2907977
|
| 50 |
Novoselov K S, Castro Neto A H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012, 146: 014006
https://doi.org/10.1088/0031-8949/2012/T146/014006
|
| 51 |
Hiura H, Ebbesen T W, Fujita J, et al.. Role of sp3 defect structures in graphite and carbon nanotubes. Nature, 1994, 367(6459): 148–151
https://doi.org/10.1038/367148a0
|
| 52 |
Ebbesen T W, Hiura H. Graphene in 3-dimensions: Towards graphite origami. Advanced Materials, 1995, 7(6): 582–586
https://doi.org/10.1002/adma.19950070618
|
| 53 |
Bernhardt T M, Kaiser B, Rademann K. Formation of superperiodic patterns on highly oriented pyrolytic graphite by manipulation of nanosized graphite sheets with the STM tip. Surface Science, 1998, 408(1–3): 86–94
https://doi.org/10.1016/S0039-6028(98)00152-6
|
| 54 |
Atamny F, Spillecke O, Schlogl R. On the STM imaging contrast of graphite: towards a “true” atomic resolution. Physical Chemistry Chemical Physics, 1999, 1(17): 4113–4118
https://doi.org/10.1039/a904657g
|
| 55 |
Lu X, Yu M, Huang H, et al.. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 1999, 10(3): 269–272
https://doi.org/10.1088/0957-4484/10/3/308
|
| 56 |
Roy H V, Kallinger C, Sattler K. Study of single and multiple foldings of graphitic sheets. Surface Science, 1998, 407(1–3): 1–6
https://doi.org/10.1016/S0039-6028(97)01032-7
|
| 57 |
Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics, 1981, 30(2): 139–326
https://doi.org/10.1080/00018738100101367
|
| 58 |
Viculis L M, Mack J J, Mayer O M, et al.. Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry, 2005, 15(9): 974
https://doi.org/10.1039/b413029d
|
| 59 |
Rao K S, Senthilnathan J, Liu Y F, et al.. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Scientific Reports, 2014, 4(1): 4237
https://doi.org/10.1038/srep04237
pmid: 24577336
|
| 60 |
Hibino H, Kageshima H, Nagase M. Graphene growth on silicon carbide. NTT Technical Review, 2009, 615–617: 199–202
|
| 61 |
Ciszewski M, Mianowski A. Survey of graphite oxidation methods using oxidizing mixtures in inorganic acids. Chemik, 2013, 67: 267–274
|
| 62 |
Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
|
| 63 |
Dreyer D R, Park S, Bielawski C W, et al.. The chemistry of graphene oxide. Chemical Society Reviews, 2010, 39(1): 228–240
https://doi.org/10.1039/B917103G
pmid: 20023850
|
| 64 |
Stankovich S, Dikin D A, Piner R D, et al.. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
https://doi.org/10.1016/j.carbon.2007.02.034
|
| 65 |
Shin H J, Kim K K, Benayad A, et al.. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 2009, 19(12): 1987–1992
https://doi.org/10.1002/adfm.200900167
|
| 66 |
Pham V H, Cuong T V, Nguyen-Phan T D, et al.. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chemical Communications, 2010, 46(24): 4375–4377
https://doi.org/10.1039/c0cc00363h
pmid: 20480069
|
| 67 |
Zhou X, Zhang J, Wu H, et al.. Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene. The Journal of Physical Chemistry C, 2011, 115(24): 11957–11961
https://doi.org/10.1021/jp202575j
|
| 68 |
Zhu C, Guo S, Fang Y, et al.. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4(4): 2429–2437
https://doi.org/10.1021/nn1002387
pmid: 20359169
|
| 69 |
Zhang J, Yang H, Shen G, et al.. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 2010, 46(7): 1112–1114
https://doi.org/10.1039/B917705A
pmid: 20126730
|
| 70 |
Wang X, Yang J, Park J, et al.. Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C, 2008, 112(22): 8192–8195
https://doi.org/10.1021/jp710931h
|
| 71 |
Fan X, Peng W, Li Y, et al.. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Advanced Materials, 2008, 20(23): 4490–4493
https://doi.org/10.1002/adma.200801306
|
| 72 |
Amarnath C A, Hong C E, Kim N H, et al.. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon, 2011, 49(11): 3497–3502
https://doi.org/10.1016/j.carbon.2011.04.048
|
| 73 |
Guo H L, Wang X F, Qian Q Y, et al.. A green approach to the synthesis of graphene nanosheets. ACS Nano, 2009, 3(9): 2653–2659
https://doi.org/10.1021/nn900227d
pmid: 19691285
|
| 74 |
Sundaram R S, Gómez-Navarro C, Balasubramanian K, et al.. Electrochemical modification of graphene. Advanced Materials, 2008, 20(16): 3050–3053
https://doi.org/10.1002/adma.200800198
|
| 75 |
Compton O C, Jain B, Dikin D A, et al.. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano, 2011, 5(6): 4380–4391
https://doi.org/10.1021/nn1030725
pmid: 21473647
|
| 76 |
Kim K S, Zhao Y, Jang H, et al.. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710
https://doi.org/10.1038/nature07719
pmid: 19145232
|
| 77 |
Kwon S Y, Ciobanu C V, Petrova V, et al.. Growth of semiconducting graphene on palladium. Nano Letters, 2009, 9(12): 3985–3990
https://doi.org/10.1021/nl902140j
pmid: 19995079
|
| 78 |
Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nature Materials, 2008, 7(5): 406–411
https://doi.org/10.1038/nmat2166
pmid: 18391956
|
| 79 |
Coraux J, N’Diaye A T, Busse C, et al.. Structural coherency of graphene on Ir(111). Nano Letters, 2008, 8(2): 565–570
https://doi.org/10.1021/nl0728874
pmid: 18189442
|
| 80 |
Li X, Cai W, An J, et al.. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
https://doi.org/10.1126/science.1171245
pmid: 19423775
|
| 81 |
Reina A, Jia X, Ho J, et al.. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35
https://doi.org/10.1021/nl801827v
pmid: 19046078
|
| 82 |
Wang J J, Zhu M Y, Outlaw R A, et al.. Free-standing subnanometer graphite sheets. Applied Physics Letters, 2004, 85(7): 1265–1267
https://doi.org/10.1063/1.1782253
|
| 83 |
Wang J, Zhu M, Outlaw R A, et al.. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon, 2004, 42(14): 2867–2872
https://doi.org/10.1016/j.carbon.2004.06.035
|
| 84 |
Zhu M, Wang J, Holloway B C, et al.. A mechanism for carbon nanosheet formation. Carbon, 2007, 45(11): 2229–2234
https://doi.org/10.1016/j.carbon.2007.06.017
|
| 85 |
Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, et al.. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Letters, 2009, 9(4): 1527–1533
https://doi.org/10.1021/nl803585s
pmid: 19260705
|
| 86 |
Jiao L, Zhang L, Wang X, et al.. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880
https://doi.org/10.1038/nature07919
pmid: 19370031
|
| 87 |
Kosynkin D V, Higginbotham A L, Sinitskii A, et al.. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876
https://doi.org/10.1038/nature07872
pmid: 19370030
|
| 88 |
Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48(8): 2127–2150
https://doi.org/10.1016/j.carbon.2010.01.058
|
| 89 |
Sahoo N G, Bao H, Pan Y, et al.. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chemical Communications, 2011, 47(18): 5235–5237
https://doi.org/10.1039/c1cc00075f
pmid: 21451845
|
| 90 |
Pan Y, Bao H, Sahoo N G, et al.. Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Advanced Functional Materials, 2011, 21(14): 2754–2763
https://doi.org/10.1002/adfm.201100078
|
| 91 |
Liu Z, Robinson J T, Sun X, et al.. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 2008, 130(33): 10876–10877
https://doi.org/10.1021/ja803688x
pmid: 18661992
|
| 92 |
Sun X, Liu Z, Welsher K, et al.. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212
https://doi.org/10.1007/s12274-008-8021-8
pmid: 20216934
|
| 93 |
Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale, 2011, 3(3): 1252–1257
https://doi.org/10.1039/c0nr00680g
pmid: 21270989
|
| 94 |
Chen B, Liu M, Zhang L, et al.. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. Journal of Materials Chemistry, 2011, 21(21): 7736
https://doi.org/10.1039/c1jm10341e
|
| 95 |
Bao H, Pan Y, Ping Y, et al.. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11): 1569–1578
https://doi.org/10.1002/smll.201100191
pmid: 21538871
|
| 96 |
Zhang L, Lu Z, Zhao Q, et al.. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011, 7(4): 460–464
https://doi.org/10.1002/smll.201001522
pmid: 21360803
|
| 97 |
Yang K, Zhang S, Zhang G, et al.. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318–3323
https://doi.org/10.1021/nl100996u
pmid: 20684528
|
| 98 |
Tian B, Wang C, Zhang S, et al.. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009
https://doi.org/10.1021/nn201560b
pmid: 21815655
|
| 99 |
Shen A, Li D, Cai X, et al.. Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment. Journal of Biomedical Materials Research Part A, 2012, 100A(9): 2499–2506
|
| 100 |
Kim H, Namgung R, Singha K, et al.. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chemistry, 2011, 22(12): 2558–2567
https://doi.org/10.1021/bc200397j
pmid: 22034966
|
| 101 |
Min K, Jung J Y, Han T H, et al.. Graphene electrodes for artificial muscles. Molecular Crystals and Liquid Crystals, 2011, 539(1): 260–265
https://doi.org/10.1080/15421406.2011.566507
|
| 102 |
Cao Y C, Wei W, Liu J, et al.. The preparation of graphene reinforced poly(vinyl alcohol) antibacterial nanocomposite thin film. International Journal of Polymer Science, 2015: 407043 (7 pages)
https://doi.org/10.1155/2015/407043
|
| 103 |
Zhao Y, Arowo M, Wu W, et al.. Polyaniline/graphene nanocomposites synthesized by in situ high gravity chemical oxidative polymerization for supercapacitor. Journal of Industrial and Engineering Chemistry, 2015, 25: 280–287
https://doi.org/10.1016/j.jiec.2014.11.005
|
| 104 |
Lee T, Yun T, Park B, et al.. Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: importance of establishing intimate electronic contact through nanoscale blending. Journal of Materials Chemistry, 2012, 22(39): 21092
https://doi.org/10.1039/c2jm33111j
|
| 105 |
Lee J K, Song S, Kim B. Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polymer Composites, 2012, 33(8): 1263–1273
https://doi.org/10.1002/pc.22251
|
| 106 |
Chen L Y, Konishi H, Fehrenbacher A, et al.. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia, 2012, 67(1): 29–32
https://doi.org/10.1016/j.scriptamat.2012.03.013
|
| 107 |
Wang J, Li Z, Fan G, et al.. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66(8): 594–597
https://doi.org/10.1016/j.scriptamat.2012.01.012
|
| 108 |
Zhou C, Szpunar J A, Cui X. Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Applied Materials & Interfaces, 2016, 8(24): 15232–15241
https://doi.org/10.1021/acsami.6b02607
pmid: 27248316
|
| 109 |
Gómez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets. Nano Letters, 2008, 8(7): 2045–2049
https://doi.org/10.1021/nl801384y
pmid: 18540659
|
| 110 |
Koller A. Structure and Properties of Ceramics. Amsterdam: Elsevier Publishing Company, 1994
|
| 111 |
Sternitzke M. Structural ceramic nanocomposites. Journal of the European Ceramic Society, 1997, 17(9): 1061–1082
https://doi.org/10.1016/S0955-2219(96)00222-1
|
| 112 |
Choi S M, Awaji H. Nanocomposites — a new material design concept. Science and Technology of Advanced Materials, 2005, 6(1): 2–10
https://doi.org/10.1016/j.stam.2004.06.002
|
| 113 |
Wu P, Lv H, Peng T, et al.. Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction. Scientific Reports, 2014, 4(1): 3968
https://doi.org/10.1038/srep03968
pmid: 24495943
|
| 114 |
Eda G, Chhowalla M. Graphene-based composite thin films for electronics. Nano Letters, 2009, 9(2): 814–818
https://doi.org/10.1021/nl8035367
pmid: 19173637
|
| 115 |
Mohammad-Rezaei R, Razmi H, Jabbari M. Graphene ceramic composite as a new kind of surface-renewable electrode: application to the electroanalysis of ascorbic acid. Mikrochimica Acta, 2014, 181(15–16): 1879–1885
https://doi.org/10.1007/s00604-014-1238-1
|
| 116 |
Gutierrez-Gonzalez C F, Smirnov A, Centeno A, et al.. Wear behavior of graphene/alumina composite. Ceramics International, 2015, 41(6): 7434–7438
https://doi.org/10.1016/j.ceramint.2015.02.061
|
| 117 |
Zhou M, Lin T, Huang F, et al.. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Advanced Functional Materials, 2013, 23(18): 2263–2269
https://doi.org/10.1002/adfm.201202638
|
| 118 |
Zhang Y, Ali S F, Dervishi E, et al.. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6): 3181–3186
https://doi.org/10.1021/nn1007176
pmid: 20481456
|
| 119 |
Fan H, Wang L, Zhao K, et al.. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 2010, 11(9): 2345–2351
https://doi.org/10.1021/bm100470q
pmid: 20687549
|
| 120 |
Xu S, Zhang Z, Chu M. Long-term toxicity of reduced graphene oxide nanosheets: Effects on female mouse reproductive ability and offspring development. Biomaterials, 2015, 54: 188–200
https://doi.org/10.1016/j.biomaterials.2015.03.015
pmid: 25907052
|
| 121 |
Jennifer M, Maciej W. Nanoparticle technology as a double-edged sword: cytotoxic, genotoxic and epigenetic effects on living cells. Journal of Biomaterials and Nanobiotechnology, 2013, 4(01): 53–63
https://doi.org/10.4236/jbnb.2013.41008
|
| 122 |
Wu W, Yan L, Wu Q, et al.. Evaluation of the toxicity of graphene oxide exposure to the eye. Nanotoxicology, 2016, 10(9): 1329–1340
https://doi.org/10.1080/17435390.2016.1210692
pmid: 27385068
|
| 123 |
Boruta R,Olejnik R, Slobodian P, et al.. Different kinds of carbon-based material for resistive gas sensing. Key Engineeing Materials, 2013, 543: 269–272
|
| 124 |
Li J, Zhang Y, Yang T, et al.. DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin. Materials Science and Engineering C, 2009, 29(8): 2360–2364
https://doi.org/10.1016/j.msec.2009.06.006
|
| 125 |
Du J, Yue R, Yao Z, et al.. Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419(2): 94–99
https://doi.org/10.1016/j.colsurfa.2012.11.060
|
| 126 |
Sheng Z H, Zheng X Q, Xu J Y, et al.. Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors & Bioelectronics, 2012, 34(1): 125–131
https://doi.org/10.1016/j.bios.2012.01.030
pmid: 22342696
|
| 127 |
Papa H, Gaillard M, Gonzalez L, et al.. Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors. Biosensors, 2014, 4(4): 449–460
https://doi.org/10.3390/bios4040449
pmid: 25587433
|
| 128 |
Sun C L, Lee H H, Yang J M, et al.. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosensors & Bioelectronics, 2011, 26(8): 3450–3455
https://doi.org/10.1016/j.bios.2011.01.023
pmid: 21324669
|
| 129 |
Guo M, Chen J, Li J, et al.. Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis, 2004, 16(23): 1992–1998
https://doi.org/10.1002/elan.200403053
|
| 130 |
Li L, Lu H, Deng L. A sensitive NADH and ethanol biosensor based on graphene–Au nanorods nanocomposites. Talanta, 2013, 113: 1–6
https://doi.org/10.1016/j.talanta.2013.03.074
pmid: 23708615
|
| 131 |
Habibi B, Jahanbakhshi M, Pournaghi-Azar M H. Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon-ceramic electrode by differential pulse voltammetry. Electrochimica Acta, 2011, 56(7): 2888–2894
https://doi.org/10.1016/j.electacta.2010.12.079
|
| 132 |
Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 2012, 41(6): 2283–2307
https://doi.org/10.1039/C1CS15270J
pmid: 22143223
|
| 133 |
Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 2014, 173: 75–88
https://doi.org/10.1016/j.jconrel.2013.10.017
pmid: 24161530
|
| 134 |
Bo Z, Mao S, Han Z J, et al.. Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews, 2015, 44(8): 2108–2121
https://doi.org/10.1039/C4CS00352G
pmid: 25711336
|
| 135 |
Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 2009, 20(44): 445502
https://doi.org/10.1088/0957-4484/20/44/445502
pmid: 19809107
|
| 136 |
Lu G, Huebner K L, Ocola L E, et al.. Gas sensors based on tin oxide nanoparticles synthesized from a mini-arc plasma source. Journal of Nanomaterials, 2006, (1): 20
https://doi.org/10.1155/JNM/2006/60828
|
| 137 |
Lei N, Li P, Xue W, et al.. Simple graphene chemiresistors as pH sensors: fabrication and characterization. Measurement Science & Technology, 2011, 22(10): 107002
https://doi.org/10.1088/0957-0233/22/10/107002
|
| 138 |
Bartolomeo A D, Luongo G, Giubileo F, et al.. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials, 2017, 4(2): 025075
|
| 139 |
Zhang W, Huang J K, Chen C H, et al.. High-gain phototransistors based on a CVD MoS2 monolayer. Advanced Materials, 2013, 25(25): 3456–3461
https://doi.org/10.1002/adma.201301244
pmid: 23703933
|
| 140 |
Di Bartolomeo A, Genovese L, Foller T, et al.. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors. Nanotechnology, 2017, 28(21): 214002
https://doi.org/10.1088/1361-6528/aa6d98
pmid: 28471746
|
| 141 |
Koppens F H L, Mueller T, Avouris P, et al.. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 2014, 9(10): 780–793
https://doi.org/10.1038/nnano.2014.215
pmid: 25286273
|
| 142 |
Antony J, Grimme S. Structures and interaction energies of stacked graphene-nucleobase complexes. Physical Chemistry Chemical Physics, 2008, 10(19): 2722–2729
https://doi.org/10.1039/b718788b
pmid: 18464987
|
| 143 |
Gowtham S,Scheicher R H, Ahuja R, et al.. Physisorption of nucleobases on graphene: Density-functional calculations. Physical Review B, 2007, 76(3): 033401
|
| 144 |
Lin L, Liu Y, Tang L, et al.. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst, 2011, 136(22): 4732–4737
https://doi.org/10.1039/c1an15610a
pmid: 21952074
|
| 145 |
Xu C, Xu B, Gu Y, et al.. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 2013, 6(5): 1388
https://doi.org/10.1039/c3ee23870a
|
| 146 |
Sun W, Hou F, Gong S, et al.. Direct electrochemistry and electrocatalysis of hemoglobin on three-dimensional graphene modified carbon ionic liquid electrode. Sensors and Actuators B: Chemical, 2015, 219: 331–337
https://doi.org/10.1016/j.snb.2015.05.015
|
| 147 |
Shan C, Yang H, Song J, et al.. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry, 2009, 81(6): 2378–2382
https://doi.org/10.1021/ac802193c
pmid: 19227979
|
| 148 |
Zhou M, Zhai Y, Dong S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 2009, 81(14): 5603–5613
https://doi.org/10.1021/ac900136z
pmid: 19522529
|
| 149 |
Dey R S, Raj C R. Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Applied Materials & Interfaces, 2013, 5(11): 4791–4798
https://doi.org/10.1021/am400280u
pmid: 23721306
|
| 150 |
Cao S, Zhang L, Chai Y, et al.. Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst. Talanta, 2013, 109: 167–172
https://doi.org/10.1016/j.talanta.2013.02.002
pmid: 23618155
|
| 151 |
Li Z, Xie C, Wang J, et al.. Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sensors and Actuators B: Chemical, 2015, 208: 505–511
https://doi.org/10.1016/j.snb.2014.11.054
|
| 152 |
Ahn J H, Choi S J, Han J W, et al.. Double-gate nanowire field effect transistor for a biosensor. Nano Letters, 2010, 10(8): 2934–2938
https://doi.org/10.1021/nl1010965
pmid: 20698606
|
| 153 |
Ohno Y, Maehashi K, Yamashiro Y, et al.. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Letters, 2009, 9(9): 3318–3322
https://doi.org/10.1021/nl901596m
pmid: 19637913
|
| 154 |
Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters, 2008, 8(12): 4469–4476
https://doi.org/10.1021/nl802412n
pmid: 19367973
|
| 155 |
Mao S, Yu K, Chang J, et al.. Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Scientific Reports, 2013, 3(1): 1696
https://doi.org/10.1038/srep01696
pmid: 23603871
|
| 156 |
Stine R, Robinson J T, Sheehan P E, et al.. Real-time DNA detection using reduced graphene oxide field effect transistors. Advanced Materials, 2010, 22(46): 5297–5300
https://doi.org/10.1002/adma.201002121
pmid: 20872408
|
| 157 |
Bonanni A, Loo A H, Pumera M. Graphene for impedimetric biosensing. Trends in Analytical Chemistry, 2012, 37: 12–21
https://doi.org/10.1016/j.trac.2012.02.011
|
| 158 |
Bonanni A, Pumera M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano, 2011, 5(3): 2356–2361
https://doi.org/10.1021/nn200091p
pmid: 21355609
|
| 159 |
Wang J, Kwak Y, Lee I Y, et al.. Highly responsive hydrogen gas sensing by partially reduced graphite oxide thin films at room temperature. Carbon, 2012, 50(11): 4061–4067
https://doi.org/10.1016/j.carbon.2012.04.053
|
| 160 |
Mao S, Cui S, Lu G, et al.. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. Journal of Materials Chemistry, 2012, 22(22): 11009
https://doi.org/10.1039/c2jm30378g
|
| 161 |
Sudibya H G, He Q, Zhang H, et al.. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano, 2011, 5(3): 1990–1994
pmid: 21524119
|
| 162 |
Zhou H, Wang X, Yu P, et al.. Sensitive and selective voltammetric measurement of Hg2+ by rational covalent functionalization of graphene oxide with cysteamine. Analyst, 2012, 137(2): 305–308
https://doi.org/10.1039/C1AN15793K
pmid: 22059229
|
| 163 |
Li S J, Qian C, Wang K, et al.. Application of thermally reduced graphene oxide modified electrode in simultaneous determination of dihydroxybenzene isomers. Sensors and Actuators B: Chemical, 2012, 174: 441–448
https://doi.org/10.1016/j.snb.2012.08.070
|
| 164 |
Wang Y, Zhang S, Du D, et al.. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry, 2011, 21(14): 5319–5325
https://doi.org/10.1039/c0jm03441j
|
| 165 |
Zhang L, Zhang A, Du D, et al.. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale, 2012, 4(15): 4674–4679
https://doi.org/10.1039/c2nr30976a
pmid: 22732870
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|