|
|
|
Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction |
Infant RAJ, Yongli DUAN, Daniel KIGEN, Wang YANG, Liqiang HOU, Fan YANG, Yongfeng LI( ) |
| State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China |
|
|
|
|
Abstract Though the transition-metal dichalcogenides (TMDs) were proven to have a better performance on the hydrogen evolution reaction (HER), the bulk production of active TMD materials remains a challenging work. This report overcomes those barriers by showing a simple procedure to synthesize TaS2 nanosheets through modifying the arc discharge process. The usage of chloride as the transporting agent reduces the growth period of the formed TaS2 with active edge sites. TaS2 is found to have a uniform thickness (4 nm) with high crystallinity and adopt a 2H polytype (double-layered hexagonal) structure. The as-synthesized TaS2 has superior activity for HER with the potential of 280 mV.
|
| Keywords
hydrogen evolution reaction
TaS2 nanosheets
arc disharge
active edge sites
|
|
Corresponding Author(s):
Yongfeng LI
|
|
Online First Date: 07 August 2018
Issue Date: 10 September 2018
|
|
| 1 |
Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
pmid: 15499015
|
| 2 |
Zhu Y, Murali S, Cai W, et al.. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924
https://doi.org/10.1002/adma.201001068
pmid: 20706983
|
| 3 |
Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581
https://doi.org/10.1038/nmat3064
pmid: 21778997
|
| 4 |
Meric I, Han M Y, Young A F, et al.. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 2008, 3(11): 654–659
https://doi.org/10.1038/nnano.2008.268
pmid: 18989330
|
| 5 |
Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
https://doi.org/10.1021/acsnano.5b05040
pmid: 26407037
|
| 6 |
Zeng Z Y, Tan C L, Huang X, et al.. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803
https://doi.org/10.1039/C3EE42620C
|
| 7 |
Wu J J, Liu M J, Chatterjee K, et al.. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Advanced Materials Interfaces, 2016, 3(9): 1500669
https://doi.org/10.1002/admi.201500669
|
| 8 |
Radisavljevic B, Radenovic A, Brivio J, et al.. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
https://doi.org/10.1038/nnano.2010.279
pmid: 21278752
|
| 9 |
Raj S I, Xu X W, Yang W, et al.. Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212: 614–620
https://doi.org/10.1016/j.electacta.2016.07.059
|
| 10 |
Liu C, Kong D, Hsu P C, et al.. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11(12): 1098–1104
https://doi.org/10.1038/nnano.2016.138
pmid: 27525474
|
| 11 |
Tan C, Zeng Z, Huang X, et al.. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angewandte Chemie International Edition in English, 2015, 54(6): 1841–1845
https://doi.org/10.1002/anie.201410890
pmid: 25530025
|
| 12 |
Zhang X, Lai Z, Liu Z, et al.. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angewandte Chemie International Edition in English, 2015, 54(18): 5425–5428
https://doi.org/10.1002/anie.201501071
pmid: 25760801
|
| 13 |
Lee Y H, Zhang X Q, Zhang W, et al.. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325
https://doi.org/10.1002/adma.201104798
pmid: 22467187
|
| 14 |
Muratore C, Hu J J, Wang B, et al.. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104(26): 261604
https://doi.org/10.1063/1.4885391
|
| 15 |
Etzkorn J, Therese H A, Rocker F, et al.. Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Advanced Materials, 2005, 17(19): 2372–2375
https://doi.org/10.1002/adma.200500850
|
| 16 |
Nath M, Rao C N R. New metal disulfide nanotubes. Journal of the American Chemical Society, 2001, 123(20): 4841–4842
https://doi.org/10.1021/ja010388d
pmid: 11457297
|
| 17 |
Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97
https://doi.org/10.1039/B9NR00224C
pmid: 20648369
|
| 18 |
Li P, Stender C L, Ringe E, et al.. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099
https://doi.org/10.1002/smll.201000226
pmid: 20486215
|
| 19 |
Yu Y, Yang F, Lu X F, et al.. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276
https://doi.org/10.1038/nnano.2014.323
pmid: 25622230
|
| 20 |
Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al.. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109
https://doi.org/10.1002/smll.200500133
pmid: 17193403
|
| 21 |
Park K Y, Kim H J, Suh Y J. Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor. Powder Technology, 2007, 172(3): 144–148
https://doi.org/10.1016/j.powtec.2006.11.011
|
| 22 |
Sun G, Liu J, Zhang X, et al.. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angewandte Chemie International Edition, 2014, 53(46): 12576–12580
pmid: 25130600
|
| 23 |
Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010
https://doi.org/10.1039/b913935d
pmid: 19809626
|
| 24 |
Wu X C, Tao Y R, Gao Q X, et al.. Superconducting TaS2−xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292
https://doi.org/10.1039/b905168f
pmid: 19585050
|
| 25 |
Ubaldini A, Jacimovic J, Ubrig N, et al.. Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides. Crystal Growth & Design, 2013, 13(10): 4453–4459
https://doi.org/10.1021/cg400953e
|
| 26 |
Li P, Stender C L, Ringe E, et al.. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099
https://doi.org/10.1002/smll.201000226
pmid: 20486215
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|