Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (3) : 239-246    https://doi.org/10.1007/s11706-018-0425-0
RESEARCH ARTICLE
Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction
Infant RAJ, Yongli DUAN, Daniel KIGEN, Wang YANG, Liqiang HOU, Fan YANG, Yongfeng LI()
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
 Download: PDF(380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Though the transition-metal dichalcogenides (TMDs) were proven to have a better performance on the hydrogen evolution reaction (HER), the bulk production of active TMD materials remains a challenging work. This report overcomes those barriers by showing a simple procedure to synthesize TaS2 nanosheets through modifying the arc discharge process. The usage of chloride as the transporting agent reduces the growth period of the formed TaS2 with active edge sites. TaS2 is found to have a uniform thickness (4 nm) with high crystallinity and adopt a 2H polytype (double-layered hexagonal) structure. The as-synthesized TaS2 has superior activity for HER with the potential of 280 mV.

Keywords hydrogen evolution reaction      TaS2 nanosheets      arc disharge      active edge sites     
Corresponding Author(s): Yongfeng LI   
Online First Date: 07 August 2018    Issue Date: 10 September 2018
 Cite this article:   
Infant RAJ,Yongli DUAN,Daniel KIGEN, et al. Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction[J]. Front. Mater. Sci., 2018, 12(3): 239-246.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0425-0
https://academic.hep.com.cn/foms/EN/Y2018/V12/I3/239
Fig.1  A schematic diagram of the experimental setup.
Fig.2  SEM images of the as-synthesized samples prepared at (a) 5 min, (b) 15 min, (c) 30 min, and (d) 60 min.
Fig.3  (a) TEM image, (b) SAED pattern, (c) AFM image and (d) its corresponding height profile of exfoliated TaS2 nanosheets obtained after 60 min.
Fig.4  (a) Raman spectra at the reaction time of 5 and 60 min. (b) XRD patterns of TaS2 samples prepared at various reaction times. XPS spectra of (c) Ta and (d) S.
Fig.5  (a) Polarization curves, (b) corresponding Tafel plots and (c) Nyquist plots of TaS2 samples prepared at various reaction times.
Structure Polytype Synthesis route Temperature/ºC Time duration/h Ref.
Nanobelts 2H heating in ampoule with I2 760 48 [S1]
Nanorods 2H & 3R CVT using I2 powder 750 7 [S2]
Nanobelts 2H two-step heating process in ampoule with I2 750 7 [S3]
Nanotubes 2H CVD using Ta2O5 625 12 [S4]
Fullerene like 1T CVD using TaCl5 and H2S 750 several [S5]
Nanowires 1T SACVT 1100 60 [S6]
Thin flakes 1T CVT 1000 168 [S7]
Nanosheets 2H arc discharge 1000 1 this work
  Table S1 Comparison of various synthesis routes and its parameters
Synthesis route Polytype Current density /(mA?cm−2) Onset potential /mV Tafel slope /(mV?dec−1) Ref.
Exfoliation 1T-TaS2 10 310 215 [S8]
Plasma 1T-TaS2 10 200 135 [S8]
Sonication 2H-TaS2 10 175 120 [S9]
PVCVD 1T-TaS2 10 381 158.9 [S10]
2H-TaS2 361 104.4
3R-TaS2 106 85.1
Arc discharge 2H-TaS2 10 280 105 this work
  Table S2 Comparison of HER performance of TaS2 with other reports
Reaction time/min Shape Average size/nm Onset potential/mV Tafel slope/(mV?dec−1)
5 cube 600×300 (l×b) 550 230
15 pellet 250×100×74 (l×b×h) 460 150
30 pellet 250×82×50 (l×b×h) 400 119
60 sheet 150×4 (l×t) 280 105
  Table S3 Comparison of HER performance of TaS2 with respect to reaction time
  Fig. S1 XRD pattern for the sample prepared at the molar ratio of 1:3 (TaCl5:S).
  Fig. S2 (a) SEM image of exfoliated TaS2 nanosheet at high resolution and (b) the EDAX pattern.
  Fig. S3 (a) AFM image and (b) corresponding height profile for two films.
1 Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896 pmid: 15499015
2 Zhu Y, Murali S, Cai W, et al.. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924
https://doi.org/10.1002/adma.201001068 pmid: 20706983
3 Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581
https://doi.org/10.1038/nmat3064 pmid: 21778997
4 Meric I, Han M Y, Young A F, et al.. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 2008, 3(11): 654–659
https://doi.org/10.1038/nnano.2008.268 pmid: 18989330
5 Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
https://doi.org/10.1021/acsnano.5b05040 pmid: 26407037
6 Zeng Z Y, Tan C L, Huang X, et al.. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803
https://doi.org/10.1039/C3EE42620C
7 Wu J J, Liu M J, Chatterjee K, et al.. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Advanced Materials Interfaces, 2016, 3(9): 1500669
https://doi.org/10.1002/admi.201500669
8 Radisavljevic B, Radenovic A, Brivio J, et al.. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
https://doi.org/10.1038/nnano.2010.279 pmid: 21278752
9 Raj S I, Xu X W, Yang W, et al.. Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212: 614–620
https://doi.org/10.1016/j.electacta.2016.07.059
10 Liu C, Kong D, Hsu P C, et al.. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11(12): 1098–1104
https://doi.org/10.1038/nnano.2016.138 pmid: 27525474
11 Tan C, Zeng Z, Huang X, et al.. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angewandte Chemie International Edition in English, 2015, 54(6): 1841–1845
https://doi.org/10.1002/anie.201410890 pmid: 25530025
12 Zhang X, Lai Z, Liu Z, et al.. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angewandte Chemie International Edition in English, 2015, 54(18): 5425–5428
https://doi.org/10.1002/anie.201501071 pmid: 25760801
13 Lee Y H, Zhang X Q, Zhang W, et al.. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325
https://doi.org/10.1002/adma.201104798 pmid: 22467187
14 Muratore C, Hu J J, Wang B, et al.. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104(26): 261604
https://doi.org/10.1063/1.4885391
15 Etzkorn J, Therese H A, Rocker F, et al.. Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Advanced Materials, 2005, 17(19): 2372–2375
https://doi.org/10.1002/adma.200500850
16 Nath M, Rao C N R. New metal disulfide nanotubes. Journal of the American Chemical Society, 2001, 123(20): 4841–4842
https://doi.org/10.1021/ja010388d pmid: 11457297
17 Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97
https://doi.org/10.1039/B9NR00224C pmid: 20648369
18 Li P, Stender C L, Ringe E, et al.. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099
https://doi.org/10.1002/smll.201000226 pmid: 20486215
19 Yu Y, Yang F, Lu X F, et al.. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276
https://doi.org/10.1038/nnano.2014.323 pmid: 25622230
20 Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al.. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109
https://doi.org/10.1002/smll.200500133 pmid: 17193403
21 Park K Y, Kim H J, Suh Y J. Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor. Powder Technology, 2007, 172(3): 144–148
https://doi.org/10.1016/j.powtec.2006.11.011
22 Sun G, Liu J, Zhang X, et al.. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angewandte Chemie International Edition, 2014, 53(46): 12576–12580
pmid: 25130600
23 Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010
https://doi.org/10.1039/b913935d pmid: 19809626
24 Wu X C, Tao Y R, Gao Q X, et al.. Superconducting TaS2−xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292
https://doi.org/10.1039/b905168f pmid: 19585050
25 Ubaldini A, Jacimovic J, Ubrig N, et al.. Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides. Crystal Growth & Design, 2013, 13(10): 4453–4459
https://doi.org/10.1021/cg400953e
26 Li P, Stender C L, Ringe E, et al.. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099
https://doi.org/10.1002/smll.201000226 pmid: 20486215
[1] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed