Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (3) : 225-238    https://doi.org/10.1007/s11706-018-0428-x
RESEARCH ARTICLE
All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells
Zhenrong JIA1,2, Xuefeng XIA1, Xiaofeng WANG1(), Tengyi WANG1, Guiying XU1, Bei LIU1, Jitong ZHOU1, Fan LI1()
1. Department of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
2. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(779 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Herein, the ability to optimize the morphology and photovoltaic performance of poly(3-hexylthiophene) (P3HT)/ZnO hybrid bulk-heterojunction solar cells via introducing all-conjugated amphiphilic P3HT-based block copolymer (BCP), poly(3-hexylthiophene)-block-poly(3-triethylene glycol-thiophene) (P3HT-b-P3TEGT), as polymeric additives is demonstrated. The results show that the addition of P3HT-b-P3TEGT additives can effectively improve the compatibility between P3HT and ZnO nanocrystals, increase the crystalline and ordered packing of P3HT chains, and form optimized hybrid nanomorphology with stable and intimate hybrid interface. The improvement is ascribed to the P3HT-b-P3TEGT at the P3HT/ZnO interface that has strong coordination interactions between the TEG side chains and the polar surface of ZnO nanoparticles. All of these are favor of the efficient exciton dissociation, charge separation and transport, thereby, contributing to the improvement of the efficiency and thermal stability of solar cells. These observations indicate that introducing all-conjugated amphiphilic BCP additives can be a promising and effective protocol for high-performance hybrid solar cells.

Keywords hybrid solar cell      P3HT      ZnO      all-conjugated amphiphilic block copolymer      additive     
Corresponding Author(s): Xiaofeng WANG,Fan LI   
Online First Date: 17 July 2018    Issue Date: 10 September 2018
 Cite this article:   
Zhenrong JIA,Xuefeng XIA,Xiaofeng WANG, et al. All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells[J]. Front. Mater. Sci., 2018, 12(3): 225-238.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0428-x
https://academic.hep.com.cn/foms/EN/Y2018/V12/I3/225
Fig.1  (a) Schematic illustration of the device structure and the corresponding chemical structures of components in the active layer of HSCs. (b) The energy band diagram of the HSCs based on P3HT/ZnO/P3HT-b-P3TEGT.
Polymer Mn a)
/(g·mol−1)
PDI a) Td b)
/ºC
λmax
/nm
λonset
/nm
Egopt c)
/eV
HOMO d)
/eV
LUMO e)
/eV
Egec f)
/eV
P3HT-b-P3TEGT 7700 2.39 421 511 644 1.93 −5.13 −3.19 1.94
Tab.1  Basic properties of the P3HT-b-P3TEGT film
Fig.2  (a) UV-vis absorption spectra of P3HT/ZnO films blended with different amounts of P3HT-b-P3TEGT. (b) XRD patterns of P3HT/ZnO films blended with different amounts of P3HT-b-P3TEGT (inset: XRD patterns in the range of 20°–60°).
Fig.3  (a) Steady-state PL spectra of P3HT/ZnO films blended with different amounts of P3HT-b-P3TEGT (λex = 460 nm). (b) Time-resolved PL decay spectra of P3HT/ZnO films blended with different amounts of P3HT-b-P3TEGT (λex = 460 nm).
Fig.4  TEM images of P3HT/ZnO films blended with different amounts of P3HT-b-P3TEGT.
Fig.5  Scheme 1 Illustrations of the morphologies of active layers in the BHJ solar cells with (right) and without (left) P3HT-b-P3TEGT.
Fig.6  (a) Current?voltage characteristics of photovoltaic cells based on P3HT/ZnO with different amounts of P3HT-b-P3TEGT hybrid films. (b) PCE of P3HT/ZnO/P3HT-b-P3TEGT BHJ HSC devices with different amounts of P3HT-b-P3TEGT diblock copolymer as a function of annealing time at 120°C.
Device Jsc/(mA·cm−2) Voc/V FF PCE [Avg] a)/(%)
w/o P3HT-b-P3TEGT 1.44 0.47 0.50 0.34 [0.32]
P3HT-b-P3TEGT (1%) 1.82 0.53 0.52 0.50 [0.47]
P3HT-b-P3TEGT (5%) 2.60 0.52 0.60 0.81 [0.79]
P3HT-b-P3TEGT (10%) 2.37 0.52 0.54 0.67 [0.64]
Tab.2  Characteristic current?voltage parameters of HSCs based on P3HT/ZnO with different amounts of P3HT-b-P3TEGT BCPs
Fig.7  Optical microscopy images of P3HT/ZnO hybrid films blended with different amount of P3HT-b-P3TEGT under 120°C for 10 min and 6 h.
  Scheme S1 Synthesis of P3HT-b-P3TEGT amphiphilic diblock copolymer.
  Fig. S11H NMR spectrum of 2,5 dibromo-3-thienyl triethylene glycol monomethyl ether (insets: 1H NMR spectra of 2,5-dibromo-3-bromomethylthiophene (upper) and 2,5-dibromo-3-thiophenemethanol (below)).
  Fig. S21H NMR spectrum of P3HT-b-P3TEGT amphiphilic diblock copolymer.
  Fig. S3 Gel permeation chromatgraphy (GPC) traces of P3HT-b-P3TEGT amphiphilic diblock copolymers with chloroform as eluent.
  Fig. S4 The thermogravimetric analysis (TGA) of amphiphilic diblock copolymer at a heating rate of 20°C/min under a nitrogen atmosphere.
  Fig. S5 Differential scanning calorimetry thermograms (DSC) of P3HT-b-P3TEGT.
  Fig. S6 UV-vis absorption spectra of P3HT-b-P3TEGT both in 1,2-dichlorobenzene solution and as the thin solid film.
  Fig. S7 Cyclic voltammograms of P3HT-b-P3TEGT.
  Fig. S8 TEM image of ZnO nanoparticles. The inset shows the corresponding HRTEM image.
  Fig. S9 Variation of XRD peak intensity and the full width at half maximum (FWHM) at (100), corresponding to the a-axis orientation of the P3HT crystallite, in P3HT:ZnO blend films at different P3HT-b-P3TEGT weight fractions.
  Fig. S10 PL spectra of P3HT/ZnO films blended with different amounts of P3HT-b-P3TEGT (λex = 325 nm).
  Fig. S11 AFM images of P3HT/ZnO films blended with different amounts of P3HT-b-P3TEGT (1 μm × 1 μm).
1 Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295(5564): 2425–2427
https://doi.org/10.1126/science.1069156 pmid: 11923531
2 Gao F, Ren S, Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy & Environmental Science, 2013, 6(7): 2020–2040
https://doi.org/10.1039/c3ee23666h
3 Sun Y, Liu Z, Yuan J, et al.. Polymer selection toward efficient polymer/PbSe planar heterojunction hybrid solar cells. Organic Electronics, 2015, 24: 263–271
https://doi.org/10.1016/j.orgel.2015.06.010
4 Yue W, Wei F, Li Y, et al.. Hierarchical CuInS2 synthesized with the induction of histidine for polymer/CuInS2 solar cells. Materials Science in Semiconductor Processing, 2018, 76: 14–24
https://doi.org/10.1016/j.mssp.2017.12.009
5 Giansante C, Mastria R, Lerario G, et al.. Molecular-level switching of polymer/nanocrystal non-covalent interactions and application in hybrid solar cells. Advanced Functional Materials, 2015, 25(1): 111–119
https://doi.org/10.1002/adfm.201401841
6 Li F, Shi Y, Yuan K, et al.. Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance. New Journal of Chemistry, 2013, 37(1): 195–203
https://doi.org/10.1039/C2NJ40563F
7 Liu Z, Sun Y, Yuan J, et al.. High-efficiency hybrid solar cells based on polymer/PbSxSe1−x nanocrystals benefiting from vertical phase segregation. Advanced Materials, 2013, 25(40): 5772–5778
https://doi.org/10.1002/adma.201302340 pmid: 23934968
8 Chen Z, Zhang H, Du X, et al.. From planar-herterojunction to n-i structure: An efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy & Environmental Science, 2013, 6(5): 1597–1603
https://doi.org/10.1039/c3ee40481a
9 Im S H, Lim C S, Chang J A, et al.. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Letters, 2011, 11(11): 4789–4793
https://doi.org/10.1021/nl2026184 pmid: 21961842
10 Chang J A, Im S H, Lee Y H, et al.. Panchromatic photon-harvesting by hole-conducting materials in inorganic‒organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Letters, 2012, 12(4): 1863–1867
https://doi.org/10.1021/nl204224v pmid: 22401668
11 Vohra V, Kawashima K, Kakara T, et al.. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9(6): 403–408
https://doi.org/10.1038/nphoton.2015.84
12 Chen Y, Ye P, Zhu Z G, et al.. Achieving high-performance ternary organic solar cells through tuning acceptor alloy. Advanced Materials, 2017, 29(6): 1603154
https://doi.org/10.1002/adma.201603154 pmid: 27918107
13 Zhao W, Li S, Yao H, et al.. Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society, 2017, 139(21): 7148–7151
https://doi.org/10.1021/jacs.7b02677 pmid: 28513158
14 Giansante C, Infante I, Fabiano E, et al.. “Darker-than-black” PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. Journal of the American Chemical Society, 2015, 137(5): 1875–1886
https://doi.org/10.1021/ja510739q pmid: 25574692
15 Zhao L, Pang X, Adhikary R, et al.. Semiconductor anisotropic nanocomposites obtained by directly coupling conjugated polymers with quantum rods. Angewandte Chemie International Edition, 2011, 50(17): 3958–3962
https://doi.org/10.1002/anie.201100200 pmid: 21442709
16 Jaimes W, Alvarado-Tenorio G, Martínez-Alonso C, et al.. Effect of CdS nanoparticle content on the in-situ polymerization of 3-hexylthiophene-2,5-diyl and the application of P3HT-CdS products in hybrid solar cells. Materials Science in Semiconductor Processing, 2015, 37: 259–265
https://doi.org/10.1016/j.mssp.2015.03.055
17 Lewis E A, McNaughter P D, Yin Z, et al.. In situ synthesis of PbS nanocrystals in polymer thin films from lead(II) xanthate and dithiocarbamate complexes: evidence for size and morphology control. Chemistry of Materials, 2015, 27(6): 2127–2136
https://doi.org/10.1021/cm504765z
18 MacLachlan A J, Rath T, Cappel U B, et al.. Polymer/nanocrystal hybrid solar cells: influence of molecular precursor design on film nanomorphology, charge generation and device performance. Advanced Functional Materials, 2015, 25(3): 409–420
https://doi.org/10.1002/adfm.201403108 pmid: 25866496
19 Zhao L, Lin Z. Crafting semiconductor organic‒inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Advanced Materials, 2012, 24(32): 4353–4368 doi:10.1002/adma.201201196
pmid: 22761026
20 Sun Y, Pitliya P, Liu C, et al.. Block copolymer compatibilized polymer: fullerene blend morphology and properties. Polymer, 2017, 113: 135–146
https://doi.org/10.1016/j.polymer.2017.02.019
21 Mitchell V D, Gann E, Huettner S, et al.. Morphological and device evaluation of an amphiphilic block copolymer for organic photovoltaic applications. Macromolecules, 2017, 50(13): 4942–4951
https://doi.org/10.1021/acs.macromol.7b00377
22 Zhu M, Kim H, Jang Y J, et al.. Toward high efficiency organic photovoltaic devices with enhanced thermal stability utilizing P3HT-b-P3PHT block copolymer additives. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(47): 18432–18443
https://doi.org/10.1039/C6TA08181A
23 Li J H, Li Y, Xu J T, et al.. Self-assembled amphiphilic block copolymers/CdTe nanocrystals for efficient aqueous-processed hybrid solar cells. ACS Applied Materials & Interfaces, 2017, 9(21): 17942–17948
https://doi.org/10.1021/acsami.7b03074 pmid: 28485918
24 Yao S, Chen Z, Li F, et al.. High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals. ACS Applied Materials & Interfaces, 2015, 7(13): 7146–7152
https://doi.org/10.1021/am508985q pmid: 25781480
25 Shi Y, Li F, Chen Y. Controlling morphology and improving the photovoltaic performances of P3HT/ZnO hybrid solar cells via P3HT-b-PEO as an interfacial compatibilizer. New Journal of Chemistry, 2013, 37(1): 236–244
https://doi.org/10.1039/C2NJ40779E
26 Lee E, Hammer B, Kim J K, et al.. Hierarchical helical assembly of conjugated poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) diblock copolymers. Journal of the American Chemical Society, 2011, 133(27): 10390–10393
https://doi.org/10.1021/ja2038547 pmid: 21627317
27 Song I Y, Kim J, Im M J, et al.. Synthesis and self-assembly of thiophene-based all-conjugated amphiphilic diblock copolymers with a narrow molecular weight distribution. Macromolecules, 2012, 45(12): 5058–5068
https://doi.org/10.1021/ma300771g
28 Yamamoto T, Komarudin D, Arai M, et al.. Extensive studies on π-stacking of poly(3-alkylthiophene-2,5-diyl)s and poly(4-alkylthiazole-2,5-diyl)s by optical spectroscopy, NMR analysis, light scattering analysis, and X-ray crystallography. Journal of the American Chemical Society, 1998, 120(9): 2047–2058
https://doi.org/10.1021/ja973873a
29 Mena-Osteritz E, Meyer A, Langeveld-Voss B M W, et al.. Two-dimensional crystals of poly(3-alkyl-thiophene)s: direct visualization of polymer folds in submolecular resolution. Angewandte Chemie International Edition, 2000, 112(15): 2791–2796
https://doi.org/10.1002/1521-3757(20000804)112:15<2791::AID-ANGE2791>3.0.CO;2-#
30 Beek W J E, Wienk M M, Kemerink M, et al.. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. The Journal of Physical Chemistry B, 2005, 109(19): 9505–9516
https://doi.org/10.1021/jp050745x pmid: 16852143
31 Jia Z, Wei Y, Wang X, et al.. Improvement of morphology and performance of P3HT/ZnO hybrid solar cells induced by liquid crystal molecules. Chemical Physics Letters, 2016, 661: 119–124
https://doi.org/10.1016/j.cplett.2016.08.062
32 Prosa T J, Winokur M J, Moulton J, et al.. X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb. Macromolecules, 1992, 25(17): 4364–4372
https://doi.org/10.1021/ma00043a019
33 Hu Z, Tang S, Ahlvers A, et al.. Near-infrared photoresponse sensitization of solvent additive processed poly(3-hexylthiophene)/fullerene solar cells by a low band gap polymer. Applied Physics Letters, 2012, 101(5): 053308
https://doi.org/10.1063/1.4742143
34 Salim T, Lee H W, Wong L H, et al.. Semiconducting carbon nanotubes for improved efficiency and thermal stability of polymer‒fullerene solar cells. Advanced Functional Materials, 2016, 26(1): 51–65
https://doi.org/10.1002/adfm.201503256
35 Zhang L Y, Yin L W, Wang C X, et al.. Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent. The Journal of Physical Chemistry C, 2010, 114(21): 9651–9658
https://doi.org/10.1021/jp101324a
36 Lai C H, Lee W F, Wu I C, et al.. Highly luminescent, homogeneous ZnO nanoparticles synthesized via semiconductive polyalkyloxylthiophene template. Journal of Materials Chemistry, 2009, 19(39): 7284–7289
https://doi.org/10.1039/b909042h
37 Chien S C, Chen F C, Chung M K, et al.. Self-assembled poly(ethylene glycol) buffer layers in polymer solar cells: toward superior stability and efficiency. The Journal of Physical Chemistry C, 2012, 116(1): 1354–1360
https://doi.org/10.1021/jp211089n
38 Zhang S M, Guo Y L, Fan H J, et al.. Low bandgap π-conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structure‒property relationship study. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(20): 5498–5508 doi:10.1002/pola.23601
39 Zhang Z G, Liu Y L, Yang Y, et al.. Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups synthesis and photovoltaic application. Macromolecules, 2010, 43(22): 9376–9383
https://doi.org/10.1021/ma101491c
40 Meng L, Shang Y, Li Q, et al.. Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. The Journal of Physical Chemistry B, 2010, 114(1): 36–41
https://doi.org/10.1021/jp907167u pmid: 20000370
[1] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[2] Cuicui HU, Huanhuan ZHANG, Yanjun XING. Alkylamine-mediated synthesis and photocatalytic properties of ZnO[J]. Front. Mater. Sci., 2019, 13(1): 33-42.
[3] Yazi WANG, Wei LI, Yimeng FENG, Shasha LV, Mingyang LI, Zhengcao LI. Nitrogen ion irradiation effect on enhancing photocatalytic performance of CdTe/ZnO heterostructures[J]. Front. Mater. Sci., 2018, 12(4): 392-404.
[4] Wenyan ZHAO, Chuanjin TIAN, Zhipeng XIE, Changan WANG, Wuyou FU, Haibin YANG. Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications[J]. Front. Mater. Sci., 2017, 11(3): 271-275.
[5] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[6] Ya ZHANG,Qingzhi CUI,Zhanyong WANG,Gan LIU,Tian TIAN,Jiayue XU. Up-converted ultraviolet luminescence of Er3+:BaGd2ZnO5 phosphors for healthy illumination[J]. Front. Mater. Sci., 2016, 10(3): 328-333.
[7] C. Selene CORIA-MONROY,Mérida SOTELO-LERMA,Hailin HU. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution[J]. Front. Mater. Sci., 2016, 10(2): 168-177.
[8] David ADOLPH,Tobias TINGBERG,Thorvald ANDERSSON,Tommy IVE. Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers[J]. Front. Mater. Sci., 2015, 9(2): 185-191.
[9] Jin WANG,Tomoya HIGASHIHARA. Effects of catalyst loading amount on the synthesis of poly(3-hexylthiophene) via externally initiated Kumada catalyst-transfer polycondensation[J]. Front. Mater. Sci., 2014, 8(4): 383-390.
[10] R. ELILARASSI, G. CHANDRASEKARAN. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method[J]. Front Mater Sci, 2013, 7(2): 196-201.
[11] BIAN Xin-chao, HUO Chun-qing, ZHANG Yue-fei, CHEN Qiang. Preparation and photoluminescence of ZnO with nanostructure by hollow-cathode discharge[J]. Front. Mater. Sci., 2008, 2(1): 31-36.
[12] JIN Chenggang, WU Xuemei, SHA Zhendong, ZHUGE Lanjian. The structure and photoluminescence properties of ZnO/SiC multilayer film on Si substrate[J]. Front. Mater. Sci., 2007, 1(2): 158-161.
[13] LAN Wei, PENG Xingping, LIU Xueqin, HE Zhiwei, WANG Yinyue. Preparation and properties of ZnO thin films deposited by sol-gel technique[J]. Front. Mater. Sci., 2007, 1(1): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed