|
|
|
All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells |
Zhenrong JIA1,2, Xuefeng XIA1, Xiaofeng WANG1( ), Tengyi WANG1, Guiying XU1, Bei LIU1, Jitong ZHOU1, Fan LI1( ) |
1. Department of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China 2. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Herein, the ability to optimize the morphology and photovoltaic performance of poly(3-hexylthiophene) (P3HT)/ZnO hybrid bulk-heterojunction solar cells via introducing all-conjugated amphiphilic P3HT-based block copolymer (BCP), poly(3-hexylthiophene)-block-poly(3-triethylene glycol-thiophene) (P3HT-b-P3TEGT), as polymeric additives is demonstrated. The results show that the addition of P3HT-b-P3TEGT additives can effectively improve the compatibility between P3HT and ZnO nanocrystals, increase the crystalline and ordered packing of P3HT chains, and form optimized hybrid nanomorphology with stable and intimate hybrid interface. The improvement is ascribed to the P3HT-b-P3TEGT at the P3HT/ZnO interface that has strong coordination interactions between the TEG side chains and the polar surface of ZnO nanoparticles. All of these are favor of the efficient exciton dissociation, charge separation and transport, thereby, contributing to the improvement of the efficiency and thermal stability of solar cells. These observations indicate that introducing all-conjugated amphiphilic BCP additives can be a promising and effective protocol for high-performance hybrid solar cells.
|
| Keywords
hybrid solar cell
P3HT
ZnO
all-conjugated amphiphilic block copolymer
additive
|
|
Corresponding Author(s):
Xiaofeng WANG,Fan LI
|
|
Online First Date: 17 July 2018
Issue Date: 10 September 2018
|
|
| 1 |
Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295(5564): 2425–2427
https://doi.org/10.1126/science.1069156
pmid: 11923531
|
| 2 |
Gao F, Ren S, Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy & Environmental Science, 2013, 6(7): 2020–2040
https://doi.org/10.1039/c3ee23666h
|
| 3 |
Sun Y, Liu Z, Yuan J, et al.. Polymer selection toward efficient polymer/PbSe planar heterojunction hybrid solar cells. Organic Electronics, 2015, 24: 263–271
https://doi.org/10.1016/j.orgel.2015.06.010
|
| 4 |
Yue W, Wei F, Li Y, et al.. Hierarchical CuInS2 synthesized with the induction of histidine for polymer/CuInS2 solar cells. Materials Science in Semiconductor Processing, 2018, 76: 14–24
https://doi.org/10.1016/j.mssp.2017.12.009
|
| 5 |
Giansante C, Mastria R, Lerario G, et al.. Molecular-level switching of polymer/nanocrystal non-covalent interactions and application in hybrid solar cells. Advanced Functional Materials, 2015, 25(1): 111–119
https://doi.org/10.1002/adfm.201401841
|
| 6 |
Li F, Shi Y, Yuan K, et al.. Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance. New Journal of Chemistry, 2013, 37(1): 195–203
https://doi.org/10.1039/C2NJ40563F
|
| 7 |
Liu Z, Sun Y, Yuan J, et al.. High-efficiency hybrid solar cells based on polymer/PbSxSe1−x nanocrystals benefiting from vertical phase segregation. Advanced Materials, 2013, 25(40): 5772–5778
https://doi.org/10.1002/adma.201302340
pmid: 23934968
|
| 8 |
Chen Z, Zhang H, Du X, et al.. From planar-herterojunction to n-i structure: An efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy & Environmental Science, 2013, 6(5): 1597–1603
https://doi.org/10.1039/c3ee40481a
|
| 9 |
Im S H, Lim C S, Chang J A, et al.. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Letters, 2011, 11(11): 4789–4793
https://doi.org/10.1021/nl2026184
pmid: 21961842
|
| 10 |
Chang J A, Im S H, Lee Y H, et al.. Panchromatic photon-harvesting by hole-conducting materials in inorganic‒organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Letters, 2012, 12(4): 1863–1867
https://doi.org/10.1021/nl204224v
pmid: 22401668
|
| 11 |
Vohra V, Kawashima K, Kakara T, et al.. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9(6): 403–408
https://doi.org/10.1038/nphoton.2015.84
|
| 12 |
Chen Y, Ye P, Zhu Z G, et al.. Achieving high-performance ternary organic solar cells through tuning acceptor alloy. Advanced Materials, 2017, 29(6): 1603154
https://doi.org/10.1002/adma.201603154
pmid: 27918107
|
| 13 |
Zhao W, Li S, Yao H, et al.. Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society, 2017, 139(21): 7148–7151
https://doi.org/10.1021/jacs.7b02677
pmid: 28513158
|
| 14 |
Giansante C, Infante I, Fabiano E, et al.. “Darker-than-black” PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. Journal of the American Chemical Society, 2015, 137(5): 1875–1886
https://doi.org/10.1021/ja510739q
pmid: 25574692
|
| 15 |
Zhao L, Pang X, Adhikary R, et al.. Semiconductor anisotropic nanocomposites obtained by directly coupling conjugated polymers with quantum rods. Angewandte Chemie International Edition, 2011, 50(17): 3958–3962
https://doi.org/10.1002/anie.201100200
pmid: 21442709
|
| 16 |
Jaimes W, Alvarado-Tenorio G, Martínez-Alonso C, et al.. Effect of CdS nanoparticle content on the in-situ polymerization of 3-hexylthiophene-2,5-diyl and the application of P3HT-CdS products in hybrid solar cells. Materials Science in Semiconductor Processing, 2015, 37: 259–265
https://doi.org/10.1016/j.mssp.2015.03.055
|
| 17 |
Lewis E A, McNaughter P D, Yin Z, et al.. In situ synthesis of PbS nanocrystals in polymer thin films from lead(II) xanthate and dithiocarbamate complexes: evidence for size and morphology control. Chemistry of Materials, 2015, 27(6): 2127–2136
https://doi.org/10.1021/cm504765z
|
| 18 |
MacLachlan A J, Rath T, Cappel U B, et al.. Polymer/nanocrystal hybrid solar cells: influence of molecular precursor design on film nanomorphology, charge generation and device performance. Advanced Functional Materials, 2015, 25(3): 409–420
https://doi.org/10.1002/adfm.201403108
pmid: 25866496
|
| 19 |
Zhao L, Lin Z. Crafting semiconductor organic‒inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Advanced Materials, 2012, 24(32): 4353–4368 doi:10.1002/adma.201201196
pmid: 22761026
|
| 20 |
Sun Y, Pitliya P, Liu C, et al.. Block copolymer compatibilized polymer: fullerene blend morphology and properties. Polymer, 2017, 113: 135–146
https://doi.org/10.1016/j.polymer.2017.02.019
|
| 21 |
Mitchell V D, Gann E, Huettner S, et al.. Morphological and device evaluation of an amphiphilic block copolymer for organic photovoltaic applications. Macromolecules, 2017, 50(13): 4942–4951
https://doi.org/10.1021/acs.macromol.7b00377
|
| 22 |
Zhu M, Kim H, Jang Y J, et al.. Toward high efficiency organic photovoltaic devices with enhanced thermal stability utilizing P3HT-b-P3PHT block copolymer additives. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(47): 18432–18443
https://doi.org/10.1039/C6TA08181A
|
| 23 |
Li J H, Li Y, Xu J T, et al.. Self-assembled amphiphilic block copolymers/CdTe nanocrystals for efficient aqueous-processed hybrid solar cells. ACS Applied Materials & Interfaces, 2017, 9(21): 17942–17948
https://doi.org/10.1021/acsami.7b03074
pmid: 28485918
|
| 24 |
Yao S, Chen Z, Li F, et al.. High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals. ACS Applied Materials & Interfaces, 2015, 7(13): 7146–7152
https://doi.org/10.1021/am508985q
pmid: 25781480
|
| 25 |
Shi Y, Li F, Chen Y. Controlling morphology and improving the photovoltaic performances of P3HT/ZnO hybrid solar cells via P3HT-b-PEO as an interfacial compatibilizer. New Journal of Chemistry, 2013, 37(1): 236–244
https://doi.org/10.1039/C2NJ40779E
|
| 26 |
Lee E, Hammer B, Kim J K, et al.. Hierarchical helical assembly of conjugated poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) diblock copolymers. Journal of the American Chemical Society, 2011, 133(27): 10390–10393
https://doi.org/10.1021/ja2038547
pmid: 21627317
|
| 27 |
Song I Y, Kim J, Im M J, et al.. Synthesis and self-assembly of thiophene-based all-conjugated amphiphilic diblock copolymers with a narrow molecular weight distribution. Macromolecules, 2012, 45(12): 5058–5068
https://doi.org/10.1021/ma300771g
|
| 28 |
Yamamoto T, Komarudin D, Arai M, et al.. Extensive studies on π-stacking of poly(3-alkylthiophene-2,5-diyl)s and poly(4-alkylthiazole-2,5-diyl)s by optical spectroscopy, NMR analysis, light scattering analysis, and X-ray crystallography. Journal of the American Chemical Society, 1998, 120(9): 2047–2058
https://doi.org/10.1021/ja973873a
|
| 29 |
Mena-Osteritz E, Meyer A, Langeveld-Voss B M W, et al.. Two-dimensional crystals of poly(3-alkyl-thiophene)s: direct visualization of polymer folds in submolecular resolution. Angewandte Chemie International Edition, 2000, 112(15): 2791–2796
https://doi.org/10.1002/1521-3757(20000804)112:15<2791::AID-ANGE2791>3.0.CO;2-#
|
| 30 |
Beek W J E, Wienk M M, Kemerink M, et al.. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. The Journal of Physical Chemistry B, 2005, 109(19): 9505–9516
https://doi.org/10.1021/jp050745x
pmid: 16852143
|
| 31 |
Jia Z, Wei Y, Wang X, et al.. Improvement of morphology and performance of P3HT/ZnO hybrid solar cells induced by liquid crystal molecules. Chemical Physics Letters, 2016, 661: 119–124
https://doi.org/10.1016/j.cplett.2016.08.062
|
| 32 |
Prosa T J, Winokur M J, Moulton J, et al.. X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb. Macromolecules, 1992, 25(17): 4364–4372
https://doi.org/10.1021/ma00043a019
|
| 33 |
Hu Z, Tang S, Ahlvers A, et al.. Near-infrared photoresponse sensitization of solvent additive processed poly(3-hexylthiophene)/fullerene solar cells by a low band gap polymer. Applied Physics Letters, 2012, 101(5): 053308
https://doi.org/10.1063/1.4742143
|
| 34 |
Salim T, Lee H W, Wong L H, et al.. Semiconducting carbon nanotubes for improved efficiency and thermal stability of polymer‒fullerene solar cells. Advanced Functional Materials, 2016, 26(1): 51–65
https://doi.org/10.1002/adfm.201503256
|
| 35 |
Zhang L Y, Yin L W, Wang C X, et al.. Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent. The Journal of Physical Chemistry C, 2010, 114(21): 9651–9658
https://doi.org/10.1021/jp101324a
|
| 36 |
Lai C H, Lee W F, Wu I C, et al.. Highly luminescent, homogeneous ZnO nanoparticles synthesized via semiconductive polyalkyloxylthiophene template. Journal of Materials Chemistry, 2009, 19(39): 7284–7289
https://doi.org/10.1039/b909042h
|
| 37 |
Chien S C, Chen F C, Chung M K, et al.. Self-assembled poly(ethylene glycol) buffer layers in polymer solar cells: toward superior stability and efficiency. The Journal of Physical Chemistry C, 2012, 116(1): 1354–1360
https://doi.org/10.1021/jp211089n
|
| 38 |
Zhang S M, Guo Y L, Fan H J, et al.. Low bandgap π-conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structure‒property relationship study. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(20): 5498–5508 doi:10.1002/pola.23601
|
| 39 |
Zhang Z G, Liu Y L, Yang Y, et al.. Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups synthesis and photovoltaic application. Macromolecules, 2010, 43(22): 9376–9383
https://doi.org/10.1021/ma101491c
|
| 40 |
Meng L, Shang Y, Li Q, et al.. Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. The Journal of Physical Chemistry B, 2010, 114(1): 36–41
https://doi.org/10.1021/jp907167u
pmid: 20000370
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|