Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (3) : 273-282    https://doi.org/10.1007/s11706-018-0432-1
RESEARCH ARTICLE
A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors
Ke ZHAN1(), Tong YIN1, Yuan XUE1, Yinwen TAN1, Yihao ZHOU1, Ya YAN1,2, Bin ZHAO1,2()
1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
2. Shanghai Innovation Institute for Materials,?Shanghai 200444,?China
 Download: PDF(478 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A two-step approach was reported to fabricate cobaltous?hydroxide/γ-nickel?oxide?hydroxide/reduced graphene oxide (Co(OH)2/γ-NiOOH/RGO) nanocomposites on nickel foam by combining the reduction of graphene oxide with the help of reflux condensation and the subsequent hydrothermal of Co(OH)2 on RGO. The microstructural, surface morphology and electrochemical properties of the Co(OH)2/γ-NiOOH/RGO nanocomposite were investigated. The results showed that the surface of the first-step fabricated γ-NiOOH/RGO nanocomposites was uniformly coated by Co(OH)2 nanoflakes with lateral size of tens of nm and thickness of several nm. Co(OH)2/γ-NiOOH/RGO nanocomposite demonstrated a high specific capacitance (745 mF/cm2 at 0.5 mA/cm2) and a cycling stability of 69.8% after 1000 cycles at 30 mV/cm2. γ-NiOOH/RGO//Co(OH)2/γ-NiOOH/RGO asymmetric supercapacitor was assembled, and maximum gravimetric energy density of 57.3 W?h/kg and power density of 66.1 kW/kg were achieved. The synergistic effect between the highly conductive graphene and the nanoflake Co(OH)2 structure was responsible for the high electrochemical performance of the hybrid electrode. It is expected that this research could offer a simple method to prepare graphene-based electrode materials.

Keywords reflux condensation      graphene      cobaltous?hydroxide      supercapacitor     
Corresponding Author(s): Ke ZHAN,Bin ZHAO   
Online First Date: 10 August 2018    Issue Date: 10 September 2018
 Cite this article:   
Ke ZHAN,Tong YIN,Yuan XUE, et al. A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors[J]. Front. Mater. Sci., 2018, 12(3): 273-282.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0432-1
https://academic.hep.com.cn/foms/EN/Y2018/V12/I3/273
Fig.1  Schematic diagram for the preparation of Co(OH)2/γ-NiOOH/RGO nanocomposite.
Fig.2  SEM images: (a) pure Ni foam; (b)γ-NiOOH/RGO/Ni foam; (c) low-magnification and (d) high-magnification of Co(OH)2/γ-NiOOH/RGO.
Fig.3  XRD patterns of 3D Ni foam before and after the reflux condensation and hydrothermal treatments.
Fig.4  XPS spectra of (a) GO and (b) RGO after the reflux condensation treatment.
Fig.5  Electrochemistry properties of Co(OH)2/γ-NiOOH/RGO nanocomposite: (a) CV curves at different scan rates; (b) cycling performance of the nanocomposite at a scan rate of 30 mV/s; (c)(d) galvanostatic charge?discharge curves at different current densities.
Fig.6  Electrochemistry properties of γ-NiOOH/RGO/Co(OH)2//γ-NiOOH/RGO nanocomposite: (a) CV curves at different scan rates; (b) cycling performance of the nanocomposite at a scan rate of 30 mV/s; (c)(d) galvanostatic charge?discharge curves at different current densities.
Fig.7  Ragone plots of power density vs. energy density, with the energy and the power densities derived from discharge curves at various current densities.
  Fig. S1 SEM images of Ni foam before and after the reflux?condensation at different temperatures: (a) pure Ni foam; (b) 80°C; (c) 90°C; (d) 100°C.
  Fig. S2 XRD patterns of the 3D g-NiOOH/RGO hybrid fabricated at various temperatures.
  Fig. S3 Electrochemistry properties of γ-NiOOH/RGO hybrid fabricated at different reactive temperatures: (a) CV curves at 100 mV/s; (b) galvanostatic charge?discharge curves at 5 mA/cm2; (c) corresponding specific capacitance of the hybrid electrodes versus current density.
1 Shao Y, El-Kady M F, Wang L J, et al.. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44(11): 3639–3665
https://doi.org/10.1039/C4CS00316K
2 Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy & Environmental Science, 2014, 7(3): 867–884
https://doi.org/10.1039/c3ee43526a
3 Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors. Energy & Environmental Science, 2013, 6(1): 41–53
https://doi.org/10.1039/C2EE23284G
4 Zhang W, Xu C, Ma C, et al.. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Advanced Materials, 2017, 29(36): 1701677doi:10.1002/adma.201701677
5 Wang C, Qu H, Peng T, et al.. Large scale α-Co(OH)2 needle arrays grown on carbon nanotube foams as free standing electrodes for supercapacitors. Electrochimica Acta, 2016, 191: 133–141
https://doi.org/10.1016/j.electacta.2016.01.057
6 Cheng J, Zhao B, Zhang W, et al.. High-performance supercapacitor applications of NiO-nanoparticle-decorated millimeter-long vertically aligned carbon nanotube arrays via an effective supercritical CO2-assisted method. Advanced Functional Materials, 2015, 25(47): 7381–7391
https://doi.org/10.1002/adfm.201502711
7 Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828
https://doi.org/10.1039/C1CS15060J
8 El-Kady M F, Strong V, Dubin S, et al.. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 2012, 335(6074): 1326–1330
https://doi.org/10.1126/science.1216744
9 Zhao C, Ren F, Xue X, et al.. A high-performance asymmetric supercapacitor based on Co(OH)2/graphene and activated carbon electrodes. Journal of Electroanalytical Chemistry, 2016, 782: 98–102
https://doi.org/10.1016/j.jelechem.2016.10.023
10 Choi N S, Chen Z, Freunberger S A, et al.. Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie International Edition, 2012, 51(40): 9994–10024
https://doi.org/10.1002/anie.201201429
11 Xing W, Qiao S, Ding R, et al.. Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 2006, 44(2): 216–224
https://doi.org/10.1016/j.carbon.2005.07.029
12 Qiu Y, Zhao Y, Yang X, et al.. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale, 2014, 6(7): 3626–3631
https://doi.org/10.1039/C3NR06675D
13 Tang Z, Tang C, Gong H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Advanced Functional Materials, 2012, 22(6): 1272–1278
https://doi.org/10.1002/adfm.201102796
14 Zhao C, Ren F, Xue X, et al.. A high-performance asymmetric supercapacitor based on Co(OH)2/graphene and activated carbon electrodes. Journal of Electroanalytical Chemistry, 2016, 782: 98–102
https://doi.org/10.1016/j.jelechem.2016.10.023
15 Fan Z, Yan J, Wei T, et al.. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Advanced Functional Materials, 2011, 21(12): 2366–2375
https://doi.org/10.1002/adfm.201100058
16 Qu Q, Li L, Tian S, et al.. A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O. Journal of Power Sources, 2010, 195(9): 2789–2794
https://doi.org/10.1016/j.jpowsour.2009.10.108
17 Qu Q, Shi Y, Tian S, et al.. A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2. Journal of Power Sources, 2009, 194(2): 1222–1225
https://doi.org/10.1016/j.jpowsour.2009.06.068
18 Yin T, Zhang W, Yin Y, et al.. Co(OH)2 nanoflakes grown on 3D graphene foam as a binder-free hybrid electrode for high-performance supercapacitors. Journal of Materials Science Materials in Electronics, 2017, 28(11): 7884–7891
https://doi.org/10.1007/s10854-017-6487-4
19 Wu S, Chen W, Yan L. Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(8): 2765–2772
https://doi.org/10.1039/c3ta14387b
20 Chang J K, Wu C M, Sun I W. Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. Journal of Materials Chemistry, 2010, 20(18): 3729–3735
https://doi.org/10.1039/b925176f
21 Wen J, Li S, Chen T, et al.. Three-dimensional hierarchical NiCo hydroxide@Ni3S2 nanorod hybrid structure as high performance positive material for asymmetric supercapacitor. Electrochimica Acta, 2016, 222: 965–975
https://doi.org/10.1016/j.electacta.2016.11.064
22 Gao Z H, Zhang H, Cao G P, et al.. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochimica Acta, 2013, 87: 375–380
https://doi.org/10.1016/j.electacta.2012.09.075
23 Della Noce R, Eugénio S, Silva T, et al.. α-Co(OH)2/carbon nanofoam composite as electrochemical capacitor electrode operating at 2 V in aqueous medium. Journal of Power Sources, 2015, 288: 234–242
https://doi.org/10.1016/j.jpowsour.2015.04.131
24 He Y S, Bai D W, Yang X, et al.. A Co(OH)2‒graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochemistry Communications, 2010, 12(4): 570–573
https://doi.org/10.1016/j.elecom.2010.02.002
25 Hu C C, Chen J C, Chang K H. Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples. Journal of Power Sources, 2013, 221: 128–133
https://doi.org/10.1016/j.jpowsour.2012.07.111
26 Chen Z, Ren W, Gao L, et al.. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011, 10(6): 424–428
https://doi.org/10.1038/nmat3001
27 Wu Z S, Sun Y, Tan Y Z, et al.. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. Journal of the American Chemical Society, 2012, 134(48): 19532–19535
https://doi.org/10.1021/ja308676h
28 Jiang C, Zhao B, Cheng J, et al.. Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochimica Acta, 2015, 173: 399–407
https://doi.org/10.1016/j.electacta.2015.05.081
29 Hofmann U, Frenzel A. Die Reduktion von Graphitoxyd mit Schwefelwasserstoff. Kolloid Zeitschrift, 1934, 68(2): 149–151 (in German)
https://doi.org/10.1007/BF01451376
30 Gao W, Alemany L B, Ci L, et al.. New insights into the structure and reduction of graphite oxide. Nature Chemistry, 2009, 1(5): 403–408
https://doi.org/10.1038/nchem.281
31 Si Y, Samulski E T. Synthesis of water soluble graphene. Nano Letters, 2008, 8(6): 1679–1682
https://doi.org/10.1021/nl080604h
32 Stankovich S, Dikin D A, Piner R D, et al.. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
https://doi.org/10.1016/j.carbon.2007.02.034
33 Fan Z, Wang K, Wei T, et al.. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 2010, 48(5): 1686–1689
https://doi.org/10.1016/j.carbon.2009.12.063
34 Li Z, Fan G, Tan Z, et al.. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology, 2014, 25(32): 325601
https://doi.org/10.1088/0957-4484/25/32/325601
35 Liu Q Y, He M, Xu X J, et al.. Self-assembly of graphene oxide on the surface of aluminum foil. New Journal of Chemistry, 2013, 37(1): 181–187
https://doi.org/10.1039/C2NJ40493A
36 Liu Y, Li Y, Zhong M, et al.. A green and ultrafast approach to the synthesis of scalable graphene nanosheets with Zn powder for electrochemical energy storage. Journal of Materials Chemistry, 2011, 21(39): 15449–15455 doi:10.1039/C1JM12599K
37 Compton O C, Jain B, Dikin D A, et al.. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano, 2011, 5(6): 4380–4391
https://doi.org/10.1021/nn1030725
38 Xu F, Deng M, Li G, et al.. Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing. Electrochimica Acta, 2013, 88: 59–65
https://doi.org/10.1016/j.electacta.2012.10.070
39 Jiang J, Liu J, Ding R, et al.. Large-scale uniform α-Co(OH)2 long nanowire arrays grown on graphite as pseudocapacitor electrodes. ACS Applied Materials & Interfaces, 2011, 3(1): 99–103
https://doi.org/10.1021/am1009887
40 Chang L, Ren F, Zhao C, et al.. Synthesis of Co(OH)2/Ni(OH)2 nanomaterials with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. Journal of Electroanalytical Chemistry, 2016, 778: 110–115
https://doi.org/10.1016/j.jelechem.2016.08.020
41 Ping Y, Yan J M, Wang Z L, et al.. Ag0.1‒Pd0.9/rGO: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(39): 12188–12191
https://doi.org/10.1039/c3ta12724a
42 Zhao C, Wang X, Wang S, et al.. Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. International Journal of Hydrogen Energy, 2012, 37(16): 11846–11852
https://doi.org/10.1016/j.ijhydene.2012.05.138
43 Zhao C, Wang X, Wang S, et al.. Pseudocapacitive properties of cobalt hydroxide electrodeposited on Ni-foam-supported carbon nanomaterial. Materials Research Bulletin, 2013, 48(9): 3189–3195
https://doi.org/10.1016/j.materresbull.2013.04.089
44 Pang H, Yan Z, Wang W, et al.. Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale, 2012, 4(19): 5946–5953
https://doi.org/10.1039/c2nr31208e
45 Wu M S, Guo Z S, Jow J J. Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. The Journal of Physical Chemistry C, 2010, 114(49): 21861–21867
https://doi.org/10.1021/jp108598q
46 Wang C, Xu J, Yuen M F, et al.. Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Advanced Functional Materials, 2014, 24(40): 6372–6380
https://doi.org/10.1002/adfm.201401216
47 Huang Z, Zhao X, Ren J, et al.. Electrochemical deposition of nanostructured manganese oxide on carbon cloth for flexible high-performance supercapacitor electrodes. Journal of Nanoscience and Nanotechnology, 2016, 16(6): 5668–5675
https://doi.org/10.1166/jnn.2016.11765
48 Jeong K H, Lee H J, Simpson M F, et al.. Electrochemical synthesis of graphene/MnO2 nano-composite for application to supercapacitor electrode. Journal of Nanoscience and Nanotechnology, 2016, 16(5): 4620–4625
https://doi.org/10.1166/jnn.2016.11012
49 Lu X F, Wu D J, Li R Z, et al.. Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(13): 4706–4713
https://doi.org/10.1039/C3TA14930G
50 Chang J, Xu H, Sun J, et al.. High pseudocapacitance material prepared via in situ growth of Ni(OH)2 nanoflakes on reduced graphene oxide. Journal of Materials Chemistry, 2012, 22(22): 11146–11150
https://doi.org/10.1039/c2jm30243h
51 Wang Y M, Zhang X, Guo C Y, et al.. Controllable synthesis of 3D NixCo1−x oxides with different morphologies for high-capacity supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(42): 13290–13300
https://doi.org/10.1039/c3ta12713c
52 Ji J, Zhang L L, Ji H, et al.. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano, 2013, 7(7): 6237–6243
https://doi.org/10.1021/nn4021955
53 Yan J, Fan Z, Sun W, et al.. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Advanced Functional Materials, 2012, 22(12): 2632–2641
https://doi.org/10.1002/adfm.201102839
54 Li M, Xu S, Cherry C, et al.. Asymmetrical supercapacitor composed of thin Co(OH)2 nanoflakes on three-dimensional Ni/Si microchannel plates with superior electrochemical performance. Electrochimica Acta, 2014, 149: 18–27
https://doi.org/10.1016/j.electacta.2014.10.091
55 Fan L Q, Liu G J, Wu J H, et al.. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochimica Acta, 2014, 137: 26–33
https://doi.org/10.1016/j.electacta.2014.05.137
56 Jiang Y, Chen L, Zhang H, et al.. Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chemical Engineering Journal, 2016, 292: 1–12
https://doi.org/10.1016/j.cej.2016.02.009
57 Fu G, Ma L, Gan M, et al.. Fabrication of 3D spongia-shaped polyaniline/MoS2 nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors. Synthetic Metals, 2017, 224: 36–45
https://doi.org/10.1016/j.synthmet.2016.12.022
[1] Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors[J]. Front. Mater. Sci., 2020, 14(4): 353-372.
[2] Dandan HAN, Jinhe WEI, Shanshan WANG, Yifan PAN, Junli XUE, Yen WEI. Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance[J]. Front. Mater. Sci., 2020, 14(4): 450-458.
[3] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[4] Kun YANG, Jinghuan TIAN, Wei QU, Bo LUAN, Ke LIU, Jun LIU, Likui WANG, Junhui JI, Wei ZHANG. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet[J]. Front. Mater. Sci., 2020, 14(2): 221-231.
[5] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[6] Jinxing ZHANG, Kexing HU, Qi OUYANG, Qilin GUI, Xiaonong CHEN. One-step functionalization of graphene via Diels--Alder reaction for improvement of dispersibility[J]. Front. Mater. Sci., 2020, 14(2): 198-210.
[7] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[8] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[9] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[10] Xia HE, Qingchun LIU, Jiajun WANG, Huiling CHEN. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics[J]. Front. Mater. Sci., 2019, 13(3): 305-313.
[11] Ram Sevak SINGH, Anurag GAUTAM, Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
[12] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[13] Chaoyuan LIU, Zhongbing HUANG, Ximing PU, Lei SHANG, Guangfu YIN, Xianchun CHEN, Shuang CHENG. Fabrication of carboxylic graphene oxide-composited polypyrrole film for neurite growth under electrical stimulation[J]. Front. Mater. Sci., 2019, 13(3): 258-269.
[14] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[15] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed