|
|
|
Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity |
Sudipta BISWAS1, Satadru PRAMANIK2, Suman MANDAL3, Sudeshna SARKAR1, Sujata CHAUDHURI2, Swati DE1( ) |
1. Department of Chemistry, University of Kalyani, Kalyani-741235, Nadia, WB, India 2. Department of Botany, University of Kalyani, Kalyani-741235, Nadia, WB, India 3. Department of Chemistry, Basirhat College, North 24 Parganas-743412, WB, India |
|
|
|
|
Abstract Asymmetric patchy Ag/Cu Janus nanoparticles (NPs) were synthesized via a “seed-mediated” approach. This is the first report of synthesis of nanometer sized metal-based Janus NPs without using complicated methods. Selective adsorption of the surfactant onto the seed NPs leads to the formation of Janus type structure. Subsequently the reduction potential of Ag+/Ag0 and Cu2+/Cu0 systems directs the formation of the “patch”. The patchy Janus NPs show significant antifungal activity towards a potent rice pathogen thus offering the prospect of future application in crop protection.
|
| Keywords
patchy Janus nanoparticle
seed mediated method
CTAB
antifungal activity
|
|
Corresponding Author(s):
Swati DE
|
|
Online First Date: 26 February 2020
Issue Date: 05 March 2020
|
|
| 1 |
J H Hodak, A Henglein, M Giersig, et al.. Laser-induced inter-diffusion in AuAg core‒shell nanoparticles. The Journal of Physical Chemistry B, 2000, 104(49): 11708–11718
https://doi.org/10.1021/jp002438r
|
| 2 |
F R Fan, D Y Liu, Y F Wu, et al.. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951
https://doi.org/10.1021/ja801566d
pmid: 18465860
|
| 3 |
H T Zhang, J Ding, G M Chow, et al.. Engineering magnetic properties of Ni nanoparticles by non-magnetic cores. Chemistry of Materials, 2009, 21(21): 5222–5228
https://doi.org/10.1021/cm902114d
|
| 4 |
M Tsuji, N Miyamae, S Lim, et al.. Crystal structures and growth mechanisms of Au@Ag core‒shell nanoparticles prepared by the microwave-polyol method. Crystal Growth & Design, 2006, 6(8): 1801–1807
https://doi.org/10.1021/cg060103e
|
| 5 |
R Costi, A E Saunders, U Banin. Colloidal hybrid nanostructures: a new type of functional materials. Angewandte Chemie International Edition, 2010, 49(29): 4878–4897
https://doi.org/10.1002/anie.200906010
pmid: 20544758
|
| 6 |
P D Cozzoli, T Pellegrino, L Manna. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 2006, 35(11): 1195–1208
https://doi.org/10.1039/b517790c
pmid: 17057845
|
| 7 |
C Wang, C Xu, H Zeng, et al.. Recent progress in syntheses and applications of dumbbell-like nanoparticles. Advanced Materials, 2009, 21(30): 3045–3052
https://doi.org/10.1002/adma.200900320
pmid: 20011128
|
| 8 |
T L Poulos. The Janus nature of heme. Natural Product Reports, 2007, 24(3): 504–510
https://doi.org/10.1039/b604195g
pmid: 17534526
|
| 9 |
G R Szilvay, A Paananen, K Laurikainen, et al.. Self-assembled hydrophobin protein films at the air–water interface: structural analysis and molecular engineering. Biochemistry, 2007, 46(9): 2345–2354
https://doi.org/10.1021/bi602358h
pmid: 17297923
|
| 10 |
J R Whiteford, P D Spanu. Hydrophobins and the interactions between fungi and plants. Molecular Plant Pathology, 2002, 3(5): 391–400
https://doi.org/10.1046/j.1364-3703.2002.00129.x
pmid: 20569345
|
| 11 |
J Du, R K O’Reilly. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chemical Society Reviews, 2011, 40(5): 2402–2416
https://doi.org/10.1039/c0cs00216j
pmid: 21384028
|
| 12 |
T Nisisako, T Torii, T Takahashi, et al.. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials, 2006, 18(9): 1152–1156
https://doi.org/10.1002/adma.200502431
|
| 13 |
A Walther, M Hoffmann, A H Müller. Emulsion polymerization using Janus particles as stabilizers. Angewandte Chemie International Edition, 2008, 47(4): 711–714
https://doi.org/10.1002/anie.200703224
pmid: 18069717
|
| 14 |
M Yoshida, J Lahann. Smart nanomaterials. ACS Nano, 2008, 2(6): 1101–1107
https://doi.org/10.1021/nn800332g
pmid: 19206325
|
| 15 |
M D McConnell, M J Kraeutler, S Yang, et al.. Patchy and multiregion Janus particles with tunable optical properties. Nano Letters, 2010, 10(2): 603–609
https://doi.org/10.1021/nl903636r
pmid: 20063864
|
| 16 |
S C Glotzer, M J Solomon. Anisotropy of building blocks and their assembly into complex structures. Nature Materials, 2007, 6(8): 557–562
https://doi.org/10.1038/nmat1949
pmid: 17667968
|
| 17 |
T Gegenbuker, M Krekhova, J Schobel, et al.. “Patchy” carbon nanotubes as efficient compatibilizers for polymer blends. ACS Macro Letters, 2016, 5(3): 306–310
https://doi.org/10.1021/acsmacrolett.6b00033
|
| 18 |
S Li, L Zhang, X Chen, et al.. Selective growth synthesis of ternary Janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Applied Materials & Interfaces, 2018, 10(28): 24137–24148
https://doi.org/10.1021/acsami.8b06527
pmid: 29952199
|
| 19 |
A Walther, A H E Müller. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194–5261
https://doi.org/10.1021/cr300089t
pmid: 23557169
|
| 20 |
L Carbone, P D Cozzoli. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today, 2010, 5(5): 449–493
https://doi.org/10.1016/j.nantod.2010.08.006
|
| 21 |
J Choi, Y Zhao, D Zhang, et al.. Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions. Nano Letters, 2003, 3(8): 995–1000
https://doi.org/10.1021/nl034106e
|
| 22 |
J N Anker, R Kopelman. Magnetically modulated optical nanoprobes. Applied Physics Letters, 2003, 82(7): 1102–1104
https://doi.org/10.1063/1.1544435
|
| 23 |
L Hong, S Jiang, S Granick. Simple method to produce Janus colloidal particles in large quantity. Langmuir, 2006, 22(23): 9495–9499
https://doi.org/10.1021/la062716z
pmid: 17073470
|
| 24 |
H Y Koo, D K Yi, S J Yoo, et al.. A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials, 2004, 16(3): 274–277
https://doi.org/10.1002/adma.200305617
|
| 25 |
K H Roh, D C Martin, J Lahann. Biphasic Janus particles with nanoscale anisotropy. Nature Materials, 2005, 4(10): 759–763
https://doi.org/10.1038/nmat1486
pmid: 16184172
|
| 26 |
F Wurm, H M König, S Hilf, et al.. Janus micelles induced by olefin metathesis. Journal of the American Chemical Society, 2008, 130(18): 5876–5877
https://doi.org/10.1021/ja801919y
pmid: 18410109
|
| 27 |
J Zhang, X J Wang, D X Wu, et al.. Bioconjugated Janus particles prepared by in situ click chemistry. Chemistry of Materials, 2009, 21(17): 4012–4018
https://doi.org/10.1021/cm901437n
|
| 28 |
P G de Gennes. Soft matter. Reviews of Modern Physics, 1992, 64(3): 645 doi:10.1103/RevModPhys.64.645
|
| 29 |
S Reculusa, C Mingotaud, E Bourgeat-Lami, et al.. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Letters, 2004, 4(9): 1677‒1682 doi:10.1021/nl049161h
|
| 30 |
F Wurm, A F M Kilbinger. Polymeric Janus particles. Angewandte Chemie International Edition, 2009, 48(45): 8412–8421
https://doi.org/10.1002/anie.200901735
pmid: 19798704
|
| 31 |
A Perro, S Reculusa, S Ravaine, et al.. Design and synthesis of Janus micro- and nanoparticle. Journal of Materials Chemistry, 2005, 15(35‒36): 3745–3760
https://doi.org/10.1039/b505099e
|
| 32 |
M Lattuada, T A Hatton. Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011, 6(3): 286–308
https://doi.org/10.1016/j.nantod.2011.04.008
|
| 33 |
A Walther, A H E Müller. Janus particles. Soft Matter, 2008, 4(4): 663–668
https://doi.org/10.1039/b718131k
|
| 34 |
G Loget, A Kuhn. Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry, 2012, 22(31): 15457–15474
https://doi.org/10.1039/c2jm31740k
|
| 35 |
T Chen, G Chen, S Xing, et al.. Scalable routes to Janus Au‒SiO2 and ternary Ag‒Au‒SiO2 nanoparticles. Chemistry of Materials, 2010, 22(13): 3826–3828
https://doi.org/10.1021/cm101155v
|
| 36 |
G A Sotiriou, A M Hirt, P Y Lozach, et al.. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles. Chemistry of Materials, 2011, 23(7): 1985–1992
https://doi.org/10.1021/cm200399t
pmid: 23729990
|
| 37 |
N A Anderson. The genetics and pathology of Rhizoctonia solani. Annual Review of Phytopathology, 1982, 20(1): 329–347
https://doi.org/10.1146/annurev.py.20.090182.001553
|
| 38 |
R Vilgalys, M A Cubeta. Molecular systematics and population biology of Rhizoctonia. Annual Review of Phytopathology, 1994, 32(1): 135–155
https://doi.org/10.1146/annurev.py.32.090194.001031
|
| 39 |
L Willocquet, F A Elazegui, N Castilla, et al.. Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies. Phytopathology, 2004, 94(7): 672–682
https://doi.org/10.1094/PHYTO.2004.94.7.672
pmid: 18943898
|
| 40 |
F N Lee, M C Rush. Rice sheath blight: A major rice disease. Plant Disease, 1983, 67(7): 829–832
https://doi.org/10.1094/PD-67-829
|
| 41 |
R K Webster, P S Gunnell, eds. Compendium of Rice Disease. St. Paul, Minnesota: The American Phytopathological Society Press, 1992
|
| 42 |
S Gangopadyay, N K Chakrabarti. Sheath blight of rice. Review of Plant Pathology, 1982, 61: 451–460
|
| 43 |
S De, S Mandal. Surfactant-assisted shape control of copper nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421: 72–83
https://doi.org/10.1016/j.colsurfa.2012.12.035
|
| 44 |
S Mandal, S De. Catalytic and fluorescence studies with copper nanoparticles synthesized in polysorbates of varying hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467: 233–250
https://doi.org/10.1016/j.colsurfa.2014.11.026
|
| 45 |
M Tsuji, S Hikino, R Tanabe, et al.. Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method. CrystEngComm, 2010, 12(11): 3900–3908
https://doi.org/10.1039/c0ce00064g
|
| 46 |
M Tsuji, S Hikino, R Tanabe, et al.. Synthesis of bicompartmental Ag/Cu nanoparticles using a two-step polyol process. Chemistry Letters, 2009, 38(8): 860–861
https://doi.org/10.1246/cl.2009.860
|
| 47 |
N Glaser, D J Adams, A Böker, et al.. Janus particles at liquid‒liquid interfaces. Langmuir, 2006, 22(12): 5227–5229
https://doi.org/10.1021/la060693i
pmid: 16732643
|
| 48 |
J R Howse, R A L Jones, A J Ryan, et al.. Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters, 2007, 99(4): 048102
https://doi.org/10.1103/PhysRevLett.99.048102
pmid: 17678409
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|