Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (1) : 24-32    https://doi.org/10.1007/s11706-020-0496-6
RESEARCH ARTICLE
Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity
Sudipta BISWAS1, Satadru PRAMANIK2, Suman MANDAL3, Sudeshna SARKAR1, Sujata CHAUDHURI2, Swati DE1()
1. Department of Chemistry, University of Kalyani, Kalyani-741235, Nadia, WB, India
2. Department of Botany, University of Kalyani, Kalyani-741235, Nadia, WB, India
3. Department of Chemistry, Basirhat College, North 24 Parganas-743412, WB, India
 Download: PDF(2651 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Asymmetric patchy Ag/Cu Janus nanoparticles (NPs) were synthesized via a “seed-mediated” approach. This is the first report of synthesis of nanometer sized metal-based Janus NPs without using complicated methods. Selective adsorption of the surfactant onto the seed NPs leads to the formation of Janus type structure. Subsequently the reduction potential of Ag+/Ag0 and Cu2+/Cu0 systems directs the formation of the “patch”. The patchy Janus NPs show significant antifungal activity towards a potent rice pathogen thus offering the prospect of future application in crop protection.

Keywords patchy Janus nanoparticle      seed mediated method      CTAB      antifungal activity     
Corresponding Author(s): Swati DE   
Online First Date: 26 February 2020    Issue Date: 05 March 2020
 Cite this article:   
Sudipta BISWAS,Satadru PRAMANIK,Suman MANDAL, et al. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity[J]. Front. Mater. Sci., 2020, 14(1): 24-32.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0496-6
https://academic.hep.com.cn/foms/EN/Y2020/V14/I1/24
Fig.1  Scheme 1 Schematic representation of anisotropic particles: (a) Janus particles; (b) multi-compartment particles; (c) patchy particles; (d) patchy Janus particles.
Fig.2  Scheme 2 Ag-seed mediated synthesis of Ag/Cu NPs.
Fig.3  Absorption spectra of Ag NPs (a), Cu NPs (b) and composite Ag/Cu NPs (c).
Fig.4  DLS results of (a) Ag NPs, (b) Cu NPs and (c) Ag/Cu NPs.
Fig.5  (a) TEM image and (b) HRTEM image of asymmetric patchy Janus Ag/Cu particles. (c) HRTEM image indicating the bi-phasic nature of the prepared particle. (d) HRTEM image of Ag patch and (e) corresponding SAED pattern.
Fig.6  TEM images of (a) Ag NPs and (b) Cu NPs prepared in CTAB medium.
Fig.7  XRD patterns of (a) asymmetric patchy Janus Ag/Cu particles, (b) Ag NPs only, and (c) Cu NPs only.
Fig.8  Scheme 3 The stepwise formation of asymmetric patchy Janus NPs.
Fig.9  Antifungal activity of NPs (the numbers 100 and 300 stand for volume in μL of NPs containing stock solution added to a total 5 mL volume of culture): (a) dry weight of R. solani after treatment with NPs; (b) inhibition rate in growth of R. solani after treatment with NPs.
Fig.10  Plate assays of the growth of R. solani: (a) control, without NP treatment; (b) R. solani treated with Ag NPs; (c) R. solani treated with Cu/Ag Janus NPs.
Fig.11  SEM images: (a) control, R. solani; (b) Ag/Cu treated, R. solani; (c) Ag treated, R. solani; (d) Cu treated, R. solani.
1 J H Hodak, A Henglein, M Giersig, et al.. Laser-induced inter-diffusion in AuAg core‒shell nanoparticles. The Journal of Physical Chemistry B, 2000, 104(49): 11708–11718
https://doi.org/10.1021/jp002438r
2 F R Fan, D Y Liu, Y F Wu, et al.. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951
https://doi.org/10.1021/ja801566d pmid: 18465860
3 H T Zhang, J Ding, G M Chow, et al.. Engineering magnetic properties of Ni nanoparticles by non-magnetic cores. Chemistry of Materials, 2009, 21(21): 5222–5228
https://doi.org/10.1021/cm902114d
4 M Tsuji, N Miyamae, S Lim, et al.. Crystal structures and growth mechanisms of Au@Ag core‒shell nanoparticles prepared by the microwave-polyol method. Crystal Growth & Design, 2006, 6(8): 1801–1807
https://doi.org/10.1021/cg060103e
5 R Costi, A E Saunders, U Banin. Colloidal hybrid nanostructures: a new type of functional materials. Angewandte Chemie International Edition, 2010, 49(29): 4878–4897
https://doi.org/10.1002/anie.200906010 pmid: 20544758
6 P D Cozzoli, T Pellegrino, L Manna. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 2006, 35(11): 1195–1208
https://doi.org/10.1039/b517790c pmid: 17057845
7 C Wang, C Xu, H Zeng, et al.. Recent progress in syntheses and applications of dumbbell-like nanoparticles. Advanced Materials, 2009, 21(30): 3045–3052
https://doi.org/10.1002/adma.200900320 pmid: 20011128
8 T L Poulos. The Janus nature of heme. Natural Product Reports, 2007, 24(3): 504–510
https://doi.org/10.1039/b604195g pmid: 17534526
9 G R Szilvay, A Paananen, K Laurikainen, et al.. Self-assembled hydrophobin protein films at the air–water interface: structural analysis and molecular engineering. Biochemistry, 2007, 46(9): 2345–2354
https://doi.org/10.1021/bi602358h pmid: 17297923
10 J R Whiteford, P D Spanu. Hydrophobins and the interactions between fungi and plants. Molecular Plant Pathology, 2002, 3(5): 391–400
https://doi.org/10.1046/j.1364-3703.2002.00129.x pmid: 20569345
11 J Du, R K O’Reilly. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chemical Society Reviews, 2011, 40(5): 2402–2416
https://doi.org/10.1039/c0cs00216j pmid: 21384028
12 T Nisisako, T Torii, T Takahashi, et al.. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials, 2006, 18(9): 1152–1156
https://doi.org/10.1002/adma.200502431
13 A Walther, M Hoffmann, A H Müller. Emulsion polymerization using Janus particles as stabilizers. Angewandte Chemie International Edition, 2008, 47(4): 711–714
https://doi.org/10.1002/anie.200703224 pmid: 18069717
14 M Yoshida, J Lahann. Smart nanomaterials. ACS Nano, 2008, 2(6): 1101–1107
https://doi.org/10.1021/nn800332g pmid: 19206325
15 M D McConnell, M J Kraeutler, S Yang, et al.. Patchy and multiregion Janus particles with tunable optical properties. Nano Letters, 2010, 10(2): 603–609
https://doi.org/10.1021/nl903636r pmid: 20063864
16 S C Glotzer, M J Solomon. Anisotropy of building blocks and their assembly into complex structures. Nature Materials, 2007, 6(8): 557–562
https://doi.org/10.1038/nmat1949 pmid: 17667968
17 T Gegenbuker, M Krekhova, J Schobel, et al.. “Patchy” carbon nanotubes as efficient compatibilizers for polymer blends. ACS Macro Letters, 2016, 5(3): 306–310
https://doi.org/10.1021/acsmacrolett.6b00033
18 S Li, L Zhang, X Chen, et al.. Selective growth synthesis of ternary Janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Applied Materials & Interfaces, 2018, 10(28): 24137–24148
https://doi.org/10.1021/acsami.8b06527 pmid: 29952199
19 A Walther, A H E Müller. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194–5261
https://doi.org/10.1021/cr300089t pmid: 23557169
20 L Carbone, P D Cozzoli. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today, 2010, 5(5): 449–493
https://doi.org/10.1016/j.nantod.2010.08.006
21 J Choi, Y Zhao, D Zhang, et al.. Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions. Nano Letters, 2003, 3(8): 995–1000
https://doi.org/10.1021/nl034106e
22 J N Anker, R Kopelman. Magnetically modulated optical nanoprobes. Applied Physics Letters, 2003, 82(7): 1102–1104
https://doi.org/10.1063/1.1544435
23 L Hong, S Jiang, S Granick. Simple method to produce Janus colloidal particles in large quantity. Langmuir, 2006, 22(23): 9495–9499
https://doi.org/10.1021/la062716z pmid: 17073470
24 H Y Koo, D K Yi, S J Yoo, et al.. A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials, 2004, 16(3): 274–277
https://doi.org/10.1002/adma.200305617
25 K H Roh, D C Martin, J Lahann. Biphasic Janus particles with nanoscale anisotropy. Nature Materials, 2005, 4(10): 759–763
https://doi.org/10.1038/nmat1486 pmid: 16184172
26 F Wurm, H M König, S Hilf, et al.. Janus micelles induced by olefin metathesis. Journal of the American Chemical Society, 2008, 130(18): 5876–5877
https://doi.org/10.1021/ja801919y pmid: 18410109
27 J Zhang, X J Wang, D X Wu, et al.. Bioconjugated Janus particles prepared by in situ click chemistry. Chemistry of Materials, 2009, 21(17): 4012–4018
https://doi.org/10.1021/cm901437n
28 P G de Gennes. Soft matter. Reviews of Modern Physics, 1992, 64(3): 645 doi:10.1103/RevModPhys.64.645
29 S Reculusa, C Mingotaud, E Bourgeat-Lami, et al.. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Letters, 2004, 4(9): 1677‒1682 doi:10.1021/nl049161h
30 F Wurm, A F M Kilbinger. Polymeric Janus particles. Angewandte Chemie International Edition, 2009, 48(45): 8412–8421
https://doi.org/10.1002/anie.200901735 pmid: 19798704
31 A Perro, S Reculusa, S Ravaine, et al.. Design and synthesis of Janus micro- and nanoparticle. Journal of Materials Chemistry, 2005, 15(35‒36): 3745–3760
https://doi.org/10.1039/b505099e
32 M Lattuada, T A Hatton. Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011, 6(3): 286–308
https://doi.org/10.1016/j.nantod.2011.04.008
33 A Walther, A H E Müller. Janus particles. Soft Matter, 2008, 4(4): 663–668
https://doi.org/10.1039/b718131k
34 G Loget, A Kuhn. Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry, 2012, 22(31): 15457–15474
https://doi.org/10.1039/c2jm31740k
35 T Chen, G Chen, S Xing, et al.. Scalable routes to Janus Au‒SiO2 and ternary Ag‒Au‒SiO2 nanoparticles. Chemistry of Materials, 2010, 22(13): 3826–3828
https://doi.org/10.1021/cm101155v
36 G A Sotiriou, A M Hirt, P Y Lozach, et al.. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles. Chemistry of Materials, 2011, 23(7): 1985–1992
https://doi.org/10.1021/cm200399t pmid: 23729990
37 N A Anderson. The genetics and pathology of Rhizoctonia solani. Annual Review of Phytopathology, 1982, 20(1): 329–347
https://doi.org/10.1146/annurev.py.20.090182.001553
38 R Vilgalys, M A Cubeta. Molecular systematics and population biology of Rhizoctonia. Annual Review of Phytopathology, 1994, 32(1): 135–155
https://doi.org/10.1146/annurev.py.32.090194.001031
39 L Willocquet, F A Elazegui, N Castilla, et al.. Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies. Phytopathology, 2004, 94(7): 672–682
https://doi.org/10.1094/PHYTO.2004.94.7.672 pmid: 18943898
40 F N Lee, M C Rush. Rice sheath blight: A major rice disease. Plant Disease, 1983, 67(7): 829–832
https://doi.org/10.1094/PD-67-829
41 R K Webster, P S Gunnell, eds. Compendium of Rice Disease. St. Paul, Minnesota: The American Phytopathological Society Press, 1992
42 S Gangopadyay, N K Chakrabarti. Sheath blight of rice. Review of Plant Pathology, 1982, 61: 451–460
43 S De, S Mandal. Surfactant-assisted shape control of copper nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421: 72–83
https://doi.org/10.1016/j.colsurfa.2012.12.035
44 S Mandal, S De. Catalytic and fluorescence studies with copper nanoparticles synthesized in polysorbates of varying hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467: 233–250
https://doi.org/10.1016/j.colsurfa.2014.11.026
45 M Tsuji, S Hikino, R Tanabe, et al.. Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method. CrystEngComm, 2010, 12(11): 3900–3908
https://doi.org/10.1039/c0ce00064g
46 M Tsuji, S Hikino, R Tanabe, et al.. Synthesis of bicompartmental Ag/Cu nanoparticles using a two-step polyol process. Chemistry Letters, 2009, 38(8): 860–861
https://doi.org/10.1246/cl.2009.860
47 N Glaser, D J Adams, A Böker, et al.. Janus particles at liquid‒liquid interfaces. Langmuir, 2006, 22(12): 5227–5229
https://doi.org/10.1021/la060693i pmid: 16732643
48 J R Howse, R A L Jones, A J Ryan, et al.. Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters, 2007, 99(4): 048102
https://doi.org/10.1103/PhysRevLett.99.048102 pmid: 17678409
[1] Yuxuan MAO, Mingming PAN, Huilin YANG, Xiao LIN, Lei YANG. Injectable hydrogel wound dressing based on strontium ion cross-linked starch[J]. Front. Mater. Sci., 2020, 14(2): 232-241.
[2] Liu YUAN, Wenshuai FAN, Linyingjun HAN, Changan GUO, Zuoqin YAN, Meifang ZHU, Xiumei MO. Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses[J]. Front. Mater. Sci., 2018, 12(1): 95-104.
[3] Zhi HUANG, Yan CHEN, Qing-Ling FENG, Wei ZHAO, Bo YU, Jing TIAN, Song-Jian LI, Bo-Miao LIN. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells[J]. Front Mater Sci, 2011, 5(3): 301-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed