Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (2) : 188-197    https://doi.org/10.1007/s11706-020-0503-y
RESEARCH ARTICLE
Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications
Rui ZHAO1, Weikai LI1, Tian WANG1, Ke ZHAN1(), Zheng YANG2, Ya YAN1, Bin ZHAO1, Junhe YANG1
1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(2763 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1·K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.

Keywords metal matrix composites      electro-deposition      micro-riveting      thermal conductivity      graphite film     
Corresponding Author(s): Ke ZHAN   
Online First Date: 14 May 2020    Issue Date: 27 May 2020
 Cite this article:   
Rui ZHAO,Weikai LI,Tian WANG, et al. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications[J]. Front. Mater. Sci., 2020, 14(2): 188-197.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0503-y
https://academic.hep.com.cn/foms/EN/Y2020/V14/I2/188
Fig.1  (a) XRD pattern of the graphite film (inset showing the flexible real sample). (b) Raman spectrum of the graphite film (inset showing its morphology).
Fig.2  Schematic of the preparation process of Cu/graphite film/Cu sandwich composites.
Fig.3  (a) XRD patterns of Cu/graphite film/Cu composites. (b) Variations of density and specific heat capacity with the graphite volume faction of Cu/graphite film/Cu composites.
Fig.4  (a)(d) Samples, (b)(e) surface morphology and (c)(f) cross-section morphology of Cu/graphite film/Cu composites (graphite volume faction 10%) without (upper) or with (lower) micro-riveting treatment.
Fig.5  (a) Thermal diffusivity values and (b) TC values of Cu/graphite film/Cu sandwich composites with different graphite contents.
Current density/(A·dm−2) η(1 1 1)/% η(2 0 0)/% η(2 2 0)/%
3 17.70 75.24 7.06
4 53.03 11.16 35.81
6 20.47 11.93 67.60
Tab.1  Texture coefficients of Cu/graphite/Cu composites with 20 wt.% graphite content prepared at different current densities
Fig.6  (a) XRD patterns and (b) TC values of Cu/graphite/Cu composites with 20 wt.% graphite content prepared at different current densities.
Fig.7  Stress–strain curves of pure graphite and micro-riveted Cu/graphite/Cu sandwich composites with 38.5% graphite content.
Fig.8  (a) Comparison of TC values of Cu/graphite film/Cu sandwich composites with different graphite volume fractions to theoretical values calculated by the TC model of laminate composites. (b) Schematics of Cu/graphite film/Cu sandwich composites with different graphite contents. (c) Compared with other kinds of graphite reinforced thermal management composites fabricated in references.
1 W Yang, L Zhou, K Peng, et al.. Effect of tungsten addition on thermal conductivity of graphite/copper composites. Composites Part B: Engineering, 2013, 55: 1–4 doi:10.1016/j.compositesb.2013.05.023
2 H Bai, N Ma, J Lang, et al.. Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder. Composites Part B: Engineering, 2013, 52: 182–186 doi:10.1016/j.compositesb.2013.04.017
3 P Tao, W Shang, C Song, et al.. Bioinspired engineering of thermal materials. Advanced Materials, 2015, 27(3): 428–463 doi:10.1002/adma.201401449 PMID:25270292
4 C Zhou, W Huang, Z Chen, et al.. In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment. Composites Part B: Engineering, 2015, 70: 256–262 doi:10.1016/j.compositesb.2014.11.018
5 G Xin, H Sun, T Hu, et al.. Large-area freestanding graphene paper for superior thermal management. Advanced Materials, 2014, 26(26): 4521–4526 doi:10.1002/adma.201400951 PMID:24817208
6 Z K Ma, J L Shi, Y Song, et al.. Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitch-based fibers. Carbon, 2006, 44(7): 1298–1301 doi:10.1016/j.carbon.2006.01.015
7 B Jiang, H Wang, G Wen, et al.. Copper–graphite–copper sandwich: superior heat spreader with excellent heat-dissipation ability and good weldability. RSC Advances, 2016, 6(30): 25128–25136 doi:10.1039/c6ra00057f
8 Z Tan, Z Li, G Fan, et al.. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Materials & Design, 2013, 47: 160–166 doi:10.1016/j.matdes.2012.11.061
9 K Mizuuchi, K Inoue, Y Agari, et al.. Processing of diamond particle dispersed aluminum matrix composites in continuous solid–liquid co-existent state by SPS and their thermal properties. Composites Part B: Engineering, 2011, 42(4): 825–831 doi:10.1016/j.compositesb.2011.01.012
10 R Prieto, J M Molina, J Narciso, et al.. Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scripta Materialia, 2008, 59(1): 11–14 doi:10.1016/j.scriptamat.2008.02.026
11 J K Chen, I S Huang. Thermal properties of aluminum–graphite composites by powder metallurgy. Composites Part B: Engineering, 2013, 44(1): 698–703 doi:10.1016/j.compositesb.2012.01.083
12 R Prieto, J M Molina, J Narciso, et al.. Thermal conductivity of graphite flakes–SiC particles/metal composites. Composites Part A: Applied Science and Manufacturing, 2011, 42(12): 1970–1977 doi:10.1016/j.compositesa.2011.08.022
13 C Zhou, G Ji, Z Chen, et al.. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Materials & Design, 2014, 63: 719–728 doi:10.1016/j.matdes.2014.07.009
14 Y Huang, Q Ouyang, Q Guo, et al.. Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications. Materials & Design, 2016, 90(59): 508–515 doi:10.1016/j.matdes.2015.10.146
15 W Sun, K Zhan, Z Yang, et al.. Facile fabrication of GO/Al composites with improved dispersion of graphene and enhanced mechanical properties by Cu doping and powder metallurgy. Journal of Alloys and Compounds, 2020, 815: 152465 doi:10.1016/j.jallcom.2019.152465
16 M Inagaki, Y Kaburagi, Y Hishiyama. Thermal man agement material: graphite. Advanced Engineering Materials, 2014, 16(5): 494–506 doi:10.1002/adem.201300418
17 M Inagaki, N Ohta, Y Hishiyama. Aromatic polyimides as carbon precursors. Carbon, 2013, 61: 1–21 doi:10.1016/j.carbon.2013.05.035
18 Y Huang, Y Su, S Li, et al.. Fabrication of graphite film/aluminum composites by vacuum hot pressing: Process optimization and thermal conductivity. Composites Part B: Engineering, 2016, 107: 43–50 doi:10.1016/j.compositesb.2016.09.051
19 H Kurita, T Miyazaki, A Kawasaki, et al.. Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Composites Part A: Applied Science and Manufacturing, 2015, 73: 125–131 doi:10.1016/j.compositesa.2015.03.013
20 W Li, Y Liu, G Wu. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon, 2015, 95: 545–551 doi:10.1016/j.carbon.2015.08.063
21 Y Huang, X Li, Y Wang, et al.. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Molecular and Cellular Biochemistry, 2014, 394(1–2): 1–12 doi:10.1007/s11010-014-2073-8 PMID:24961950
22 A M Abyzov, S V Kidalov, F M Shakhov. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Applied Thermal Engineering, 2012, 48: 72–80 doi:10.1016/j.applthermaleng.2012.04.063
23 J Chen, S Ren, X He, et al.. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon, 2017, 121: 25–34 doi:10.1016/j.carbon.2017.05.082
24 Z Tao, Q Guo, X Gao, et al.. The wettability and interface thermal resistance of copper/graphite system with an addition of chromium. Materials Chemistry and Physics, 2011, 128(1–2): 228–232 doi:10.1016/j.matchemphys.2011.03.003
25 S J Guo, Q S Yang, X Q He, et al.. Modeling of interface cracking in copper–graphite composites by MD and CFE method. Composites Part B: Engineering, 2014, 58: 586–592 doi:10.1016/j.compositesb.2013.10.042
26 L Weber, R Tavangar. Diamond-based metal matrix composites for thermal management made by liquid metal infiltration — potential and limits. Advanced Materials Research, 2009, 59: 111–115 doi:10.4028/www.scientific.net/AMR.59.111
27 G Yuan, X Li, Z Dong, et al.. Graphite blocks with preferred orientation and high thermal conductivity. Carbon, 2012, 50(1): 175–182 doi:10.1016/j.carbon.2011.08.017
28 J Chang, Q Zhang, Y Lin, et al.. Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications. Journal of Alloys and Compounds, 2018, 742: 601–609 doi:10.1016/j.jallcom.2018.01.332
29 H Chen, H Wei, M Chen, et al.. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Applied Surface Science, 2013, 283(2): 525–531 doi:10.1016/j.apsusc.2013.06.139
30 J L Liang, H Li, Y G Li. Electro-deposition method’s influence to ferrosilicon organization. Advanced Materials Research, 2013, 712–715: 50–53 doi:10.4028/www.scientific.net/AMR.712-715.50
31 A L Moore, L Shi. Emerging challenges and materials for thermal management of electronics. Materials Today, 2014, 17(4): 163–174 doi:10.1016/j.mattod.2014.04.003
32 J Yuan, K Zhang, T Li, et al.. Anisotropy of thermal conductivity and mechanical properties in Mg–5Zn–1Mn alloy. Materials & Design, 2012, 40: 257–261 doi:10.1016/j.matdes.2012.03.046
33 K Zhan, Y Wu, J Li, et al.. Investigation on surface layer characteristics of shot peened graphene reinforced Al composite by X-ray diffraction method. Applied Surface Science, 2018, 435: 1257–1264 doi:10.1016/j.apsusc.2017.11.242
34 S D Wolter, D A Borca-Tasciuc, G Chen, et al.. Thermal conductivity of epitaxially textured diamond films. Diamond and Related Materials, 2003, 12(1): 61–64 doi:10.1016/S0925-9635(02)00248-0
35 A Boden, B Boerner, P Kusch, et al.. Nanoplatelet size to control the alignment and thermal conductivity in copper–graphite composites. Nano Letters, 2014, 14(6): 3640–3644 doi:10.1021/nl501411g PMID:24839860
36 I Firkowska, A Boden, B Boemer, et al.. The origin of high thermal conductivity and ultralow thermal expansion in copper–graphite composites. Nano Letters, 2015, 15(7): 4745–4751 doi:10.1021/acs.nanolett.5b01664 PMID:26083322
37 Q Liu, X B He, S B Ren, et al.. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. Journal of Alloys and Compounds, 2014, 587: 255–259 doi:10.1016/j.jallcom.2013.09.207
38 K Jagannadham. Volume fraction of graphene platelets in copper–graphene composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 44(1): 552–559 doi:10.1007/s11661-012-1387-y
39 K Chu, X H Wang, F Wang, et al.. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon, 2018, 127: 102–112 doi:10.1016/j.carbon.2017.10.099
[1] Jun ZHAO, Hang ZHAN, Hai Tao CHEN, Jian Nong WANG. Preparation and thermal properties of layered porous carbon nanotube/epoxy resin composite films[J]. Front. Mater. Sci., 2019, 13(4): 382-388.
[2] Guangyu DUAN, Yan WANG, Junrong YU, Jing ZHU, Zuming HU. Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride[J]. Front. Mater. Sci., 2019, 13(1): 64-76.
[3] U. Sandhya SHENOY, A. Nityananda SHETTY. A simple single-step approach towards synthesis of nanofluids containing cuboctahedral cuprous oxide particles using glucose reduction[J]. Front. Mater. Sci., 2018, 12(1): 74-82.
[4] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[5] Yan-Hao DONG, Chang-An WANG, Liang-Fa HU, Jun ZHOU. Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method[J]. Front Mater Sci, 2012, 6(1): 79-86.
[6] YU Zhi-ming, FANG Mei, XIAO Zhu. Effects of enhanced nucleation on the growth and thermal performance of diamond films deposited on BeO by hot filament CVD technique[J]. Front. Mater. Sci., 2008, 2(4): 369-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed