Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2020, Vol. 14 Issue (2) : 211-220    https://doi.org/10.1007/s11706-020-0507-7
RESEARCH ARTICLE
Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating
Huan-Yan XU(), Dan LU, Xu HAN
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
 Download: PDF(1075 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, waterborne epoxy resin E44 and graphene were employed as the matrix and nanofiller, respectively, to construct composite coatings with enhanced anticorrosion performance. XRD pattern and TEM observation indicated that the obtained graphene had a stacked structure of few-layer graphitic sheets with numbers of wrinkles. SEM observations revealed that no defects or microcracks existed on the surface of graphene/epoxy coatings and the internal micropores and microcracks were filled by graphene. FTIR spectra displayed that all the characteristic absorption peaks were attributed to the epoxy resin cured with polyamide. The Tafel polarization curves showed that, as the graphene addition amount increased, the corrosive potential increased and the corrosive current decreased. ESI results proved that the addition of graphene into epoxy coatings could not only increase the impedance arc in Nyquist plots, but also increase the impedance modulus at low frequency. Finally, the enhanced anticorrosion mechanism was proposed and discussed.

Keywords graphene      waterborne epoxy      anticorrosion      electrochemical property     
Corresponding Author(s): Huan-Yan XU   
Online First Date: 14 May 2020    Issue Date: 27 May 2020
 Cite this article:   
Huan-Yan XU,Dan LU,Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-020-0507-7
https://academic.hep.com.cn/foms/EN/Y2020/V14/I2/211
Fig.1  XRD patterns of graphite and graphene.
Fig.2  TEM observation of graphene.
Fig.3  Surface morphologies of (a) GEP02, (b) GEP04 and (c) GEP06 coatings.
Fig.4  Fracture morphologies of (a) GEP02, (b) GEP04 and (c) GEP06 coatings.
Fig.5  FTIR spectra of EP (a), GEP02 (b), GEP04 (c) and GEP06 (d) coatings.
Fig.6  Hardness grades of different GEP coatings.
Fig.7  Adhesive force levels of different GEP coatings.
Fig.8  Tafel polarization curves of EP (a), GEP02 (b), GEP04 (c) and GEP06 (d) coatings.
Fig.9  Nyquist plots of different GEP coatings.
Fig.10  Bode modulus plots of different GEP coatings.
Fig.11  Photographs of different GEP coatings before and after NSS experiments.
Fig.12  Schematic diagram on the enhanced anticorrosion mechanism of GEP coating.
1 H W Huang, M L Li, Y Q Tian, et al.. Exfoliation and functionalization of α-zirconium phosphate in one pot for waterborne epoxy coatings with enhanced anticorrosion performance. Progress in Organic Coatings, 2020, 138: 105390 doi:10.1016/j.porgcoat.2019.105390
2 X X Sheng, R B Mo, Y Ma, et al.. Waterborne epoxy resin/polydopamine modified zirconium phosphate nanocomposite for anticorrosive coating. Industrial & Engineering Chemistry Research, 2019, 58(36): 16571–16580 doi:10.1021/acs.iecr.9b02557
3 M Irfan, S I Bhat, S Ahmad. Reduced graphene oxide reinforced waterborne soy alkyd nanocomposites: formulation, characterization, and corrosion inhibition analysis. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14820–14830 doi:10.1021/acssuschemeng.8b03349
4 J Ding, H Zhao, Z Shao, et al.. Bioinspired smart anticorrosive coatings with an emergency-response closing function. ACS Applied Materials & Interfaces, 2019, 11(45): 42646–42653 doi:10.1021/acsami.9b15706 PMID:31647634
5 X Luo, J Zhong, Q Zhou, et al.. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Applied Materials & Interfaces, 2018, 10(21): 18400–18415 doi:10.1021/acsami.8b01982 PMID:29727162
6 J G Wen, W Geng, H Z Geng, et al.. Improvement of corrosion resistance of waterborne polyurethane coatings by covalent and noncovalent grafted graphene oxide nanosheets. ACS Omega, 2019, 4(23): 20265–20274 doi:10.1021/acsomega.9b02687 PMID:31815229
7 M Sun, Z D Ma, A H Li, et al.. Anticorrosive performance of polyaniline/waterborne epoxy/poly (methylhydrosiloxane) composite coatings. Progress in Organic Coatings, 2020, 139: 105462 doi:10.1016/j.porgcoat.2019.105462
8 L Shen, Y Li, W J Zhao, et al.. Corrosion protection of graphene-modified zinc-rich epoxy coatings in dilute NaCl solution. ACS Applied Nano Materials, 2019, 2(1): 180–190 doi:10.1021/acsanm.8b01821
9 T Balakrishnan, S Sathiyanarayanan, S Mayavan. Advanced anticorrosion coating materials derived from sunflower oil with bifunctional properties. ACS Applied Materials & Interfaces, 2015, 7(35): 19781–19788 doi:10.1021/acsami.5b05789 PMID:26292971
10 A Liu, H W Tian, X D Ju, et al.. In-situ growth of layered double hydroxides nanosheet arrays on graphite fiber as highly dispersed nanofillers for polymer coating with excellent anticorrosion performances. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 330–340 doi:10.1016/j.jtice.2019.09.006
11 P A Sørensen, S Kiil, K Dam-Johansen, et al.. Anticorrosive coatings: a review. Journal of Coatings Technology and Research, 2009, 6(2): 135–176 doi:10.1007/s11998-008-9144-2
12 Z F Tian, H J Yu, L Wang, et al.. Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Advances, 2014, 4(54): 28195–28208 doi:10.1039/c4ra03146f
13 H Yin, Y Wan, J Zhou, et al.. Self-emulsified waterborne epoxy hardener without acid neutralizers and its emulsifying and curing properties. Pigment & Resin Technology, 2019, 48(3): 223–228 doi:10.1108/PRT-06-2017-0058
14 G M Wu, D Liu, G F Liu, et al.. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydrate Polymers, 2015, 127: 229–235 doi:10.1016/j.carbpol.2015.03.078 PMID:25965479
15 Y Ni, L Chen, K Teng, et al.. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Applied Materials & Interfaces, 2015, 7(21): 11583–11591 doi:10.1021/acsami.5b02552 PMID:25948414
16 J L Bento, E Brown, S J Woltornist, et al.. Thermal and electrical properties of nanocomposites based on self-assembled pristine graphene. Advanced Functional Materials, 2017, 27(1): 1604277 doi:10.1002/adfm.201604277
17 M J Allen, V C Tung, R B Kaner. Honeycomb carbon: a review of graphene. Chemical Reviews, 2010, 110(1): 132–145 doi:10.1021/cr900070d PMID:19610631
18 Y Zhang, L Zhang, C Zhou. Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 2013, 46(10): 2329–2339 doi:10.1021/ar300203n PMID:23480816
19 A M Pinto, I C Gonçalves, F D Magalhães. Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces, 2013, 111: 188–202 doi:10.1016/j.colsurfb.2013.05.022 PMID:23810824
20 G Kucinskis, G Bajars, J Kleperis. Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, 2013, 240: 66–79 doi:10.1016/j.jpowsour.2013.03.160
21 M A Rafiee, J Rafiee, Z Wang, et al.. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009, 3(12): 3884–3890 doi:10.1021/nn9010472 PMID:19957928
22 C H Chang, T C Huang, C W Peng, et al.. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon, 2012, 50(14): 5044–5051 doi:10.1016/j.carbon.2012.06.043
23 Y Li, Z Yang, H Qiu, et al.. Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(34): 14139–14145 doi:10.1039/c4ta02262a
24 Z Yu, H Di, Y Ma, et al.. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Applied Surface Science, 2015, 351: 986–996 doi:10.1016/j.apsusc.2015.06.026
25 G Zhu, X Cui, Y Zhang, et al.. Poly (vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer, 2019, 172: 415–422 doi:10.1016/j.polymer.2019.03.056
26 G Cui, Z X Bi, R Y Zhang, et al.. A comprehensive review on graphene-based anti-corrosive coatings. Chemical Engineering Journal, 2019, 373: 104–121 doi:10.1016/j.cej.2019.05.034
27 N Parhizkar, T Shahrabi, B Ramezanzadeh. Steel surface pre-treated by an advance and eco-friendly cerium oxide nanofilm modified by graphene oxide nanosheets; electrochemical and adhesion measurements. Journal of Alloys and Compounds, 2018, 747: 109–123 doi:10.1016/j.jallcom.2018.03.022
28 N Parhizkar, T Shahrabi, B Ramezanzadeh. Synthesis and characterization of a unique isocyanate silane reduced graphene oxide nanosheets; screening the role of multifunctional nanosheets on the adhesion and corrosion protection performance of an amido-amine cured epoxy composite. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 281–299 doi:10.1016/j.jtice.2017.10.033
29 Z Xiong, L L Zhang, J Ma, et al.. Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chemical Communications, 2010, 46(33): 6099–6101 doi:10.1039/c0cc01259a PMID:20661492
30 H Y Xu, B Li, X Han, et al.. Synergic enhancement of the anticorrosion properties of an epoxy coating by compositing with both graphene and halloysite nanotubes. Journal of Applied Polymer Science, 2019, 136(21): 47562 doi:10.1002/app.47562
31 G Sun, X Li, Y Qu, et al.. Preparation and characterization of graphite nanosheets from detonation technique. Materials Letters, 2008, 62(4–5): 703–706 doi:10.1016/j.matlet.2007.06.035
32 D A Dikin, S Stankovich, E J Zimney, et al.. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457–460 doi:10.1038/nature06016 PMID:17653188
33 H Cao, X Wu, G Yin, et al.. Synthesis of adenine-modified reduced graphene oxide nanosheets. Inorganic Chemistry, 2012, 51(5): 2954–2960 doi:10.1021/ic2022402 PMID:22356685
34 T Siva, K Kamaraj, S Sathiyanarayanan. Epoxy curing by polyaniline (PANI) — Characterization and self-healing evaluation. Progress in Organic Coatings, 2014, 77(6): 1095–1103 doi:10.1016/j.porgcoat.2014.03.019
35 Z M Dang, B Zhang, J Li, et al.. Copper particles/epoxy resin thermosetting conductive adhesive using polyamide resin as curing agent. Journal of Applied Polymer Science, 2012, 126(3): 815–821 doi:10.1002/app.36951
36 D Balgude, A Sabnis, S K Ghosh. Synthesis and characterization of cardanol based reactive polyamide for epoxy coating application. Progress in Organic Coatings, 2017, 104: 250–262 doi:10.1016/j.porgcoat.2016.11.012
37 A H Navarchian, M Joulazadeh, F Karimi. Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Progress in Organic Coatings, 2014, 77(2): 347–353 doi:10.1016/j.porgcoat.2013.10.008
38 J Chen, H Y Lu, Y Chen, et al.. Stable aqueous dispersion of polymer functionalized graphene sheets from electrochemical exfoliation for anticorrosion application. Colloid & Polymer Science, 2017, 295(10): 1951–1959 doi:10.1007/s00396-017-4173-y
39 D I Njoku, M Cui, H Xiao, et al.. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Scientific Reports, 2017, 7: 15597 doi:10.1038/s41598-017-15845-0 PMID:29142312
40 Y G Jeong, J E An. Microstructure and electrical property of epoxy/graphene/MWCNT hybrid composite films manufactured by UV-curing. Macromolecular Research, 2014, 22(10): 1059–1065 doi:10.1007/s13233-014-2157-z
41 D Prasai, J C Tuberquia, R R Harl, et al.. Graphene: corrosion-inhibiting coating. ACS Nano, 2012, 6(2): 1102–1108 doi:10.1021/nn203507y PMID:22299572
[1] Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors[J]. Front. Mater. Sci., 2020, 14(4): 353-372.
[2] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[3] Kun YANG, Jinghuan TIAN, Wei QU, Bo LUAN, Ke LIU, Jun LIU, Likui WANG, Junhui JI, Wei ZHANG. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet[J]. Front. Mater. Sci., 2020, 14(2): 221-231.
[4] Jinxing ZHANG, Kexing HU, Qi OUYANG, Qilin GUI, Xiaonong CHEN. One-step functionalization of graphene via Diels--Alder reaction for improvement of dispersibility[J]. Front. Mater. Sci., 2020, 14(2): 198-210.
[5] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[6] Xia HE, Qingchun LIU, Jiajun WANG, Huiling CHEN. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics[J]. Front. Mater. Sci., 2019, 13(3): 305-313.
[7] Ram Sevak SINGH, Anurag GAUTAM, Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
[8] Chaoyuan LIU, Zhongbing HUANG, Ximing PU, Lei SHANG, Guangfu YIN, Xianchun CHEN, Shuang CHENG. Fabrication of carboxylic graphene oxide-composited polypyrrole film for neurite growth under electrical stimulation[J]. Front. Mater. Sci., 2019, 13(3): 258-269.
[9] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[10] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
[11] Ge JU, Muhammad Arif KHAN, Huiwen ZHENG, Zhongxun AN, Mingxia WU, Hongbin ZHAO, Jiaqiang XU, Lei ZHANG, Salma BILAL, Jiujun ZHANG. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 133-144.
[12] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[13] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[14] Infant RAJ, Daniel KIGEN, Wang YANG, Fan YANG, Yongfeng LI. Edge-oriented MoS2 aligned on cellular reduced graphene for enriched dye-sensitized solar cell photovoltaic efficiency[J]. Front. Mater. Sci., 2018, 12(4): 368-378.
[15] Ke ZHAN, Tong YIN, Yuan XUE, Yinwen TAN, Yihao ZHOU, Ya YAN, Bin ZHAO. A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors[J]. Front. Mater. Sci., 2018, 12(3): 273-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed