|
|
|
Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries |
Yuming CHEN1, Wenhao TANG1, Jingru MA1, Ben GE1, Xiangliang WANG1, Yufen WANG2( ), Pengfei REN1, Ruiping LIU1( ) |
1. Department of Materials Science and Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China 2. Energy & Materials Engineering Center, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China |
|
|
|
|
Abstract Lithium–sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density. However, the dissolution of discharge intermediate products to the electrolyte, the volume change and poor electric conductivity of sulfur greatly limit their further commercialization. Herein, we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays (TiO2 NTs@Ni) prepared by an anodization and electrodeposition method. The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons. Moreover, the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode. As a result, the TiO2 NTs@Ni–S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs, and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.
|
| Keywords
lithium--sulfur battery
TiO2
self-supporting
polysulfide intermediate
|
|
Corresponding Author(s):
Yufen WANG,Ruiping LIU
|
|
Online First Date: 19 June 2020
Issue Date: 10 September 2020
|
|
| 1 |
L L Wang, Y S Ye, N Chen, et al.. Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Advanced Functional Materials, 2018, 28(38): 1800919
https://doi.org/10.1002/adfm.201800919
|
| 2 |
H J Peng, T Z Hou, Q Zhang, et al.. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium–sulfur batteries: mechanistic insight into capacity degradation. Advanced Materials Interfaces, 2014, 1(7): 1400227
https://doi.org/10.1002/admi.201400227
|
| 3 |
W Kou, X Li, Y Liu, et al.. Triple-layered carbon–SiO2 composite membrane for high energy density and long cycling Li–S batteries. ACS Nano, 2019, 13(5): 5900–5909
https://doi.org/10.1021/acsnano.9b01703
pmid: 30990658
|
| 4 |
W Chen, T Qian, J Xiong, et al.. A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Advanced Materials, 2017, 29(12): 1605160
https://doi.org/10.1002/adma.201605160
pmid: 28165170
|
| 5 |
Z Guo, H Nie, Z Yang, et al.. 3D CNTs/graphene–S–Al3Ni2 cathodes for high-sulfur-loading and long-life lithium–sulfur batteries. Advanced Science, 2018, 5(7): 1800026
https://doi.org/10.1002/advs.201800026
pmid: 30027035
|
| 6 |
D Liu, C Zhang, G Zhou, et al.. Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Advanced Science, 2018, 5(1): 1700270
https://doi.org/10.1002/advs.201700270
pmid: 29375960
|
| 7 |
M R Busche, P Adelhelm, H Sommer, et al.. Systematical electrochemical study on the parasitic shuttle-effect in lithium–sulfur-cells at different temperatures and different rates. Journal of Power Sources, 2014, 259: 289–299
https://doi.org/10.1016/j.jpowsour.2014.02.075
|
| 8 |
Y Zhai, Y Dou, D Zhao, et al.. Carbon materials for chemical capacitive energy storage. Advanced Materials, 2011, 23(42): 4828–4850
https://doi.org/10.1002/adma.201100984
pmid: 21953940
|
| 9 |
F Wu, J T Lee, E Zhao, et al.. Graphene–Li2S–carbon nanocomposite for lithium–sulfur batteries. ACS Nano, 2016, 10(1): 1333–1340
https://doi.org/10.1021/acsnano.5b06716
pmid: 26647225
|
| 10 |
G Chen, W Zhong, Y Li, et al.. Rational design of TiO–TiO2 heterostructure/polypyrrole as a multifunctional sulfur host for advanced lithium–sulfur batteries. ACS Applied Materials & Interfaces, 2019, 11(5): 5055–5063
https://doi.org/10.1021/acsami.8b19501
pmid: 30656928
|
| 11 |
L Jiao, C Zhang, C N Geng, et al.. Capture and catalytic conversion of polysulfides by in situ built TiO2–MXene heterostructures for lithium–sulfur batteries. Advanced Energy Materials, 2019, 9(19): 1900219
https://doi.org/10.1002/aenm.201900219
|
| 12 |
Y K Wang, R F Zhang, J Chen, et al.. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Advanced Energy Materials, 2019, 9(24): 1900953
https://doi.org/10.1002/aenm.201900953
|
| 13 |
L P Zhang, Y F Wang, S Q Gou, et al.. All inorganic frameworks of tin dioxide shell as cathode material for lithium sulfur batteries with improved cycle performance. The Journal of Physical Chemistry C, 2015, 119(52): 28721–28727
https://doi.org/10.1021/acs.jpcc.5b08934
|
| 14 |
X Liang, L F Nazar. In situreactive assembly of scalable core–shell sulfur–MnO2 composite cathodes. ACS Nano, 2016, 10(4): 4192–4198
https://doi.org/10.1021/acsnano.5b07458
pmid: 26910648
|
| 15 |
S H Chung, A Manthiram. A Li2S–TiS2-electrolyte composite for stable Li2S-based lithium–sulfur batteries. Advanced Energy Materials, 2019, 9(30): 1901397
https://doi.org/10.1002/aenm.201901397
|
| 16 |
M Chen, W Xu, S Jamil, et al.. Multifunctional heterostructures for polysulfide suppression in high-performance lithium–sulfur cathode. Small, 2018, 14(49): e1803134
https://doi.org/10.1002/smll.201803134
pmid: 30358110
|
| 17 |
Z Q Cui, J Yao, T Mei, et al.. Strong lithium polysulfides chemical trapping of TiC–TiO2/S composite for long-cycle lithium–sulfur batteries. Electrochimica Acta, 2019, 298: 43–51
https://doi.org/10.1016/j.electacta.2018.12.075
|
| 18 |
X Liang, A Garsuch, L F Nazar. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angewandte Chemie International Edition, 2015, 54(13): 3907–3911
https://doi.org/10.1002/anie.201410174
pmid: 25650042
|
| 19 |
Y Liao, J Xiang, L Yuan, et al.. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium–sulfur batteries. ACS Applied Materials & Interfaces, 2018, 10(44): 37955–37962
https://doi.org/10.1021/acsami.8b11118
pmid: 30360064
|
| 20 |
D R Deng, F Xue, Y J Jia, et al.. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano, 2017, 11(6): 6031–6039
https://doi.org/10.1021/acsnano.7b01945
pmid: 28570815
|
| 21 |
H Rasoulnezhad, G Hosseinzadeh, R Hosseinzadeh, et al.. Preparation of transparent nanostructured N-doped TiO2 thin films by combination of sonochemical and CVD methods with visible light photocatalytic activity. Journal of Advanced Ceramics, 2018, 7(3): 185–196
https://doi.org/10.1007/s40145-018-0270-8
|
| 22 |
C L Zhao, Y X Wu, H L Liang, et al.. N-doped graphene and TiO2 supported manganese and cerium oxides on low-temperature selective catalytic reduction of NOx with NH3. Journal of Advanced Ceramics, 2018, 7(3): 197–206
https://doi.org/10.1007/s40145-018-0271-7
|
| 23 |
H Y Shao, W K Wang, H Zhang, et al.. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium–sulfur battery. Journal of Power Sources, 2018, 378: 537–545
https://doi.org/10.1016/j.jpowsour.2017.12.067
|
| 24 |
C Zha, D Wu, T Zhang, et al.. A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium–sulfur battery. Energy Storage Materials, 2019, 17: 118–125
https://doi.org/10.1016/j.ensm.2018.11.020
|
| 25 |
Z W Seh, W Li, J J Cha, et al.. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 2013, 4(1): 1331
https://doi.org/10.1038/ncomms2327
pmid: 23299881
|
| 26 |
Q Pang, X Liang, C Y Kwok, et al.. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1(9): 16132
https://doi.org/10.1038/nenergy.2016.132
|
| 27 |
Y Zhao, W Zhu, G Z Chen, et al.. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. Journal of Power Sources, 2016, 327: 447–456
https://doi.org/10.1016/j.jpowsour.2016.07.082
|
| 28 |
J Su, L Zhu, P Geng, et al.. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light. Journal of Hazardous Materials, 2016, 316: 159–168
https://doi.org/10.1016/j.jhazmat.2016.05.004
pmid: 27232727
|
| 29 |
Y H Zhang, Y N Yang, P Xiao, et al.. Preparation of Ni nanoparticle–TiO2 nanotube composite by pulse electrodeposition. Materials Letters, 2009, 63(28): 2429–2431
https://doi.org/10.1016/j.matlet.2009.08.019
|
| 30 |
Z Liang, G Zheng, W Li, et al.. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano, 2014, 8(5): 5249–5256
https://doi.org/10.1021/nn501308m
pmid: 24766547
|
| 31 |
J P Perdew, A Ruzsinszky, G I Csonka, et al.. Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 2008, 100(13): 136406
https://doi.org/10.1103/PhysRevLett.100.136406
pmid: 18517979
|
| 32 |
J H Lim, J Choi. Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small, 2007, 3(9): 1504–1507
https://doi.org/10.1002/smll.200700114
pmid: 17647256
|
| 33 |
H Z Wang, X L Kou, L Zhang, et al.. Size-controlled synthesis, microstructure and magnetic properties of Ni nanoparticles. Materials Research Bulletin, 2008, 43(12): 3529–3536
https://doi.org/10.1016/j.materresbull.2008.01.012
|
| 34 |
J Ni, S Fu, C Wu, et al.. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Advanced Materials, 2016, 28(11): 2259–2265
https://doi.org/10.1002/adma.201504412
pmid: 26789864
|
| 35 |
C C Li, X B Liu, L Zhu, et al.. Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries. Chemistry of Materials, 2018, 30(20): 6969–6977
https://doi.org/10.1021/acs.chemmater.8b01352
|
| 36 |
Y M Li, X Han, T F Yi, et al.. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry, 2019, 31: 54–78
https://doi.org/10.1016/j.jechem.2018.05.010
|
| 37 |
L P Wang, J Y Zhang, Y Gao, et al.. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution. Scripta Materialia, 2006, 55(7): 657–660
https://doi.org/10.1016/j.scriptamat.2006.04.009
|
| 38 |
Y T Liu, D D Han, L Wang, et al.. NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Advanced Energy Materials, 2019, 9(11): 1803477
https://doi.org/10.1002/aenm.201803477
|
| 39 |
X N Shang, T F Qin, P Q Guo, et al.. A novel strategy for the selection of polysulfide adsorbents toward high-performance lithium–sulfur batteries. Advanced Materials Interfaces, 2019, 6: 1900393
https://doi.org/10.1002/admi.201900393
|
| 40 |
R Xu, J Lu, K Amine. Progress in mechanistic understanding and characterization techniques of Li–S batteries. Advanced Energy Materials, 2015, 5(16): 1500408
https://doi.org/10.1002/aenm.201500408
|
| 41 |
J Y Liao, D Higgins, G Lui, et al.. Multifunctional TiO2–C/MnO2 core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Letters, 2013, 13(11): 5467–5473
https://doi.org/10.1021/nl4030159
pmid: 24079359
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|