Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (1) : 220583    https://doi.org/10.1007/s11706-022-0583-y
RESEARCH ARTICLE
Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance
Haibo REN1,2,3(), Huaipeng WENG1, Pengfei ZHAO1, Ruzhong ZUO1(), Xiaojing LU2, Jiarui HUANG2()
1. School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
2. Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
3. Modern Technology Center, Anhui Polytechnic University, Wuhu 241000, China
 Download: PDF(2697 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A sea-urchin-like CuO/ZnO porous nanostructure is obtained via a simple solution method followed by a calcination process. There are abundant pores among the resulting nanowires due to the thermal decomposition of copper–zinc hydroxide carbonate. The specific surface area of the as-prepared CuO/ZnO sample is determined as 31.3 m2·g−1. The gas-sensing performance of the sea-urchin-like CuO/ZnO sensor is studied by exposure to volatile organic compound (VOC) vapors. With contrast to a pure porous sea-urchin-like ZnO sensor, the sea-urchin-like CuO/ZnO sensor shows superior gas-sensing behavior for acetone, formaldehyde, methanol, toluene, isopropanol and ethanol. It exhibits a high response of 52.6–100 ppm acetone vapor, with short response/recovery time. This superior sensing behavior is mainly ascribed to the porous nanowire-assembled structure with abundant p–n heterojunctions.

Keywords copper oxide      zinc oxide      copper--zinc hydroxide carbonate      volatile organic compound      gas sensor     
Corresponding Author(s): Haibo REN,Ruzhong ZUO,Jiarui HUANG   
About author:

Miaojie Yang and Mahmood Brobbey Oppong contributed equally to this work.

Issue Date: 24 January 2022
 Cite this article:   
Haibo REN,Huaipeng WENG,Pengfei ZHAO, et al. Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance[J]. Front. Mater. Sci., 2022, 16(1): 220583.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0583-y
https://academic.hep.com.cn/foms/EN/Y2022/V16/I1/220583
Fig.1  (a) XRD patterns of Zn1.5Cu1.5CO3(OH)4·4H2O precursor and final CuO/ZnO product (CuO peaks are marked with asterisks). (b) EDS result of the CuO/ZnO product.
Fig.2  Representative SEM images of (a)(b) sea-urchin-like Zn1.5Cu1.5CO3(OH)4·4H2O precursor and (c)(d) porous sea-urchin-like CuO/ZnO composites. (e) TEM image (inset shows the SAED pattern) and (f) lattice-resolved HRTEM image of porous sea-urchin-like CuO/ZnO composites.
Fig.3  TGA and DTA curves of the sea-urchin-like Zn1.5Cu1.5CO3(OH)4·4H2O precursor.
Fig.4  FTIR spectra of the sea-urchin-like Zn1.5Cu1.5CO3(OH)4·4H2O precursor (a) and the sea-urchin-like CuO/ZnO composite (b).
Fig.5  Nitrogen adsorption–desorption isotherms of sea-urchin-like CuO/ZnO composites. Inset is the corresponding pore size distribution.
Fig.6  XPS results of porous sea-urchin-like CuO/ZnO composites: (a) survey spectrum; (b) Cu 2p, (c) Zn 2p, and (d) O 1s spectra.
Fig.7  (a) Responses of sensors upon exposure to 100 ppm acetone gas at different working temperatures. (b) Responses of sensors upon exposure to 8 kinds of gases (100 ppm) at their optimal operating temperatures.
Fig.8  Real-time response curves of sensor device upon exposure to different concentrations of (a) acetone, (b) formaldehyde, (c) isopropanol, and (d) ethanol at a working temperature of 220 °C. The insets are the corresponding sensor response curves.
Sensing material Gas c(gas)/ppm θ/°C Response Ref.
CuO–ZnO/g-C3N4 acetone 500 260 5.8 [38]
CuO–ZnO/rGO acetone 10 340 9.4 [39]
Diamond-like CuO/ZnO particles acetone 500 260 24.7 [40]
Core–shell CuO@ZnO acetone 50 240 1.6 [41]
Flower-like CuO/ZnO acetone 200 240 2.8 [42]
CuO/ZnO nanosheets ethanol 200 320 130 [43]
CuO/ZnO nanorods acetone 100 300 18.3 [44]
Porous sea-urchin-like CuO/ZnO acetone 100 220 52.6 this work
acetone 1 220 9.7 this work
ethanol 100 220 47.3 this work
Tab.1  Responses of various CuO/ZnO-based gas sensors towards acetone or ethanol at different concentrations
Fig.9  Sketch of a single porous CuO/ZnO nanowire illustrating the depletion due to interactions with adsorbed species (such as O) and the formation of p-CuO/n-ZnO interfaces.
  Fig. S1 The experimental set-up.
  Fig. S2(a) Photograph of the sensor. (b) Diagram of the test principle of the gas sensing measurement system (Vh: heating voltage; Vc: circuit voltage; Vout: signal voltage; and RL: load resistor).
  Fig. S3 XRD patterns of ZnO precursor (a) and calcined ZnO product of the precursor (b).
  Fig. S4 Sea-urchin-like CuO/ZnO composites: (a) SEM image; corresponding EDS mapping images of (b) Cu, (c) Zn and (d) O elements.
  Fig. S5 Representative SEM images of (a)(b) sea-urchin-like ZnO precursor and (c)(d) porous sea-urchin-like ZnO sample.
  Fig. S6 Nitrogen adsorption and desorption isotherms of porous sea-urchin-like ZnO sample (inset: the corresponding pore size distribution).
  Fig. S7 Dynamic response-recovery curves of (a) porous sea-urchin-like CuO/ZnO sensor and (b) porous sea-urchin-like ZnO sensor towards 100 ppm acetone.
  Fig. S8 Real-time response curves of porous sea-urchin-like ZnO sensor device upon exposure to different concentrations of (a) acetone, (b) formaldehyde, (c) isopropanol, and (d) ethanol at a working temperature of 260 °C. The insets show the corresponding sensor response curves.
  Fig. S9 Energy-band diagrams (CB, conduction band; VB, valence band; Ec, the bottom of conduction band; Ev, the top of valance band; EF, the Fermi level): (a) CuO and ZnO; (b) CuO nanoparticles-decorated porous ZnO nanosheets.
1 W B Qin, Z Y Yuan, H L Gao, et al.. Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sensors and Actuators B: Chemical, 2021, 341: 130015
https://doi.org/10.1016/j.snb.2021.130015
2 Z J Han, Y Qi, Z Y Yang, et al.. Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2020, 8(38): 13169–13188
https://doi.org/10.1039/D0TC03750H
3 W Ge, X H Zhang, X T Ge, et al.. Synthesis of α-Fe2O3/SiO2 nanocomposites for the enhancement of acetone sensing performance. Materials Research Bulletin, 2021, 141: 111379
https://doi.org/10.1016/j.materresbull.2021.111379
4 L Zhu, W Zeng, Y Q Li. A non-oxygen adsorption mechanism for hydrogen detection of nanostructured SnO2 based sensors. Materials Research Bulletin, 2019, 109: 108–116
https://doi.org/10.1016/j.materresbull.2018.09.033
5 K Kim, P G Choi, T Itoh, et al.. Catalyst-free highly sensitive SnO2 nanosheet gas sensors for parts per billion-level detection of acetone. ACS Applied Materials & Interfaces, 2020, 12(46): 51637–51644
https://doi.org/10.1021/acsami.0c15273 pmid: 33146998
6 D Z Zhang, Q Mi, D Y Wang, et al.. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sensors and Actuators B: Chemical, 2021, 339: 129923
https://doi.org/10.1016/j.snb.2021.129923
7 M S Wang, Y W Wang, X J Li, et al.. WO3 porous nanosheet arrays with enhanced low temperature NO2 gas sensing performance. Sensors and Actuators B: Chemical, 2020, 316: 128050
https://doi.org/10.1016/j.snb.2020.128050
8 F X Liang, L Liang, X Y Zhao, et al.. Mesoporous anodic α-Fe2O3 interferometer for organic vapor sensing application. RSC Advances, 2018, 8(54): 31121–31128
https://doi.org/10.1039/C8RA06261G
9 E A N Simonetti, T C de Oliveira, D E D Machado, et al.. TiO2 as a gas sensor: the novel carbon structures and noble metals as new elements for enhancing sensitivity — A review. Ceramics International, 2021, 47(13): 17844–17876
https://doi.org/10.1016/j.ceramint.2021.03.189
10 Y L Kang, F Yu, L Zhang, et al.. Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics, 2021, 360: 115544
https://doi.org/10.1016/j.ssi.2020.115544
11 C C Li, H G Zhou, S C Yang, et al.. Preadsorption of O2 on the exposed (0 0 1) facets of ZnO nanostructures for enhanced sensing of gaseous acetone. ACS Applied Nano Materials, 2019, 2(10): 6144–6151
https://doi.org/10.1021/acsanm.9b00942
12 S K Gupta, S Mohan, M Valdez, et al.. Enhanced sensitivity of caterpillar-like ZnO nanostructure towards amine vapor sensing. Materials Research Bulletin, 2021, 142: 111419
https://doi.org/10.1016/j.materresbull.2021.111419
13 Q C Li, D Chen, J M Miao, et al.. Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application. Sensors and Actuators B: Chemical, 2021, 326: 128952
https://doi.org/10.1016/j.snb.2020.128952
14 J P Li, Y F Yang, Q Wang, et al.. Design of size-controlled Au nanoparticles loaded on the surface of ZnO for ethanol detection. CrystEngComm, 2021, 23(4): 783–792
https://doi.org/10.1039/D0CE01318H
15 H T Wang, Y Y Li, C C Wang, et al.. N-pentanol sensor based on ZnO nanorods functionalized with Au catalysts. Sensors and Actuators B: Chemical, 2021, 339: 129888
https://doi.org/10.1016/j.snb.2021.129888
16 J Wang, C Y Hu, Y Xia, et al.. Highly sensitive, fast and reversible NO2 sensors at room-temperature utilizing nonplasmonic electrons of ZnO/Pd hybrids. Ceramics International, 2020, 46(6): 8462–8468
https://doi.org/10.1016/j.ceramint.2019.12.081
17 S Wang, F Jia, X Wang, et al.. Fabrication of ZnO nanoparticles modified by uniformly dispersed Ag nanoparticles: enhancement of gas sensing performance. ACS Omega, 2020, 5(10): 5209–5218
https://doi.org/10.1021/acsomega.9b04243 pmid: 32201809
18 Y Gong, X F Wu, J Y Chen, et al.. Enhanced gas-sensing performance of metal@ZnO core–shell nanoparticles towards ppb-ppm level benzene: the role of metal–ZnO hetero-interfaces. New Journal of Chemistry, 2019, 43(5): 2220–2230
https://doi.org/10.1039/C8NJ04621B
19 J J Liu, L Y Zhang, J J Fan, et al.. Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sensors and Actuators B: Chemical, 2021, 331: 129425
https://doi.org/10.1016/j.snb.2020.129425
20 U T Nakate, R Ahmad, P Patil, et al.. Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures. Journal of Alloys and Compounds, 2019, 797: 456–464
https://doi.org/10.1016/j.jallcom.2019.05.111
21 Y C Liang, Y C Chang. The effect of Ni content on gas-sensing behaviors of ZnO–NiO p–n composite thin films grown through radio-frequency cosputtering of ceramic ZnO and NiO targets. CrystEngComm, 2020, 22(13): 2315–2326
https://doi.org/10.1039/D0CE00052C
22 P T Hung, P D Hoat, V X Hien, et al.. Growth and NO2-sensing properties of biaxial p-SnO/n-ZnO heterostructured nanowires. ACS Applied Materials & Interfaces, 2020, 12(30): 34274–34282
https://doi.org/10.1021/acsami.0c04974 pmid: 32639143
23 S K Min, H Kim, Y Noh, et al.. Fabrication of highly sensitive and selective acetone sensor using p-Co3O4 nanoparticle-decorated n-ZnO nanowires. Thin Solid Films, 2020, 714: 138249
https://doi.org/10.1016/j.tsf.2020.138249
24 S Nithya, R Sharan, M Roy, et al.. Ni doping in CuO: a highly sensitive electrode for sensing ammonia in ppm level using lanthanum gallate based electrolyte. Materials Research Bulletin, 2019, 118: 110478
https://doi.org/10.1016/j.materresbull.2019.05.003
25 S Kulkarni, R Ghosh. A simple approach for sensing and accurate prediction of multiple organic vapors by sensors based on CuO nanowires. Sensors and Actuators B: Chemical, 2021, 335: 129701
https://doi.org/10.1016/j.snb.2021.129701
26 A Nanda, V Singh, R K Jha, et al.. Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films. ACS Applied Materials & Interfaces, 2021, 13(18): 21936–21943
https://doi.org/10.1021/acsami.1c01085 pmid: 33913692
27 X Wang, S H Li, L L Xie, et al.. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceramics International, 2020, 46(10): 15858–15866
https://doi.org/10.1016/j.ceramint.2020.03.133
28 R N Mariammal, K Ramachandran. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Materials Research Bulletin, 2018, 100: 420–428
https://doi.org/10.1016/j.materresbull.2017.12.046
29 H B Na, X F Zhang, M Zhang, et al.. A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sensors and Actuators B: Chemical, 2019, 297: 126816
https://doi.org/10.1016/j.snb.2019.126816
30 J E Lee, C K Lim, H J Park, et al.. ZnO–CuO core–hollow cube nanostructures for highly sensitive acetone gas sensors at the ppb level. ACS Applied Materials & Interfaces, 2020, 12(31): 35688–35697
https://doi.org/10.1021/acsami.0c08593 pmid: 32618181
31 Y H Navale, S T Navale, F J Stadler, et al.. Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceramics International, 2019, 45(2): 1513–1522
https://doi.org/10.1016/j.ceramint.2018.10.022
32 J R Huang, Y J Dai, C P Gu, et al.. Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property. Journal of Alloys and Compounds, 2013, 575: 115–122
https://doi.org/10.1016/j.jallcom.2013.04.094
33 K C Xian, B Nie, Z G Li, et al.. TiO2 decorated porous carbonaceous network structures offer confinement, catalysis and thermal conductivity for effective hydrogen storage of LiBH4. Chemical Engineering Journal, 2021, 407: 127156
https://doi.org/10.1016/j.cej.2020.127156
34 C S Chen, X Y Liu, Q Fang, et al.. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight. Vacuum, 2020, 174: 109198
https://doi.org/10.1016/j.vacuum.2020.109198
35 X Y Zhang, X S He, Z W Kang, et al.. Waste eggshell-derived dual-functional CuO/ZnO/eggshell nanocomposites: (photo)catalytic reduction and bacterial inactivation. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15762–15771
https://doi.org/10.1021/acssuschemeng.9b04083
36 S Zhao, Y B Shen, F L Hao, et al.. p–n Junctions based on CuO-decorated ZnO nanowires for ethanol sensing application. Applied Surface Science, 2021, 538: 148140
https://doi.org/10.1016/j.apsusc.2020.148140
37 K Sahu, A Bisht, S Kuriakose, et al.. Two-dimensional CuO–ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants. Journal of Physics and Chemistry of Solids, 2020, 137: 109223
https://doi.org/10.1016/j.jpcs.2019.109223
38 C Qin, Y Wang, Y X Gong, et al.. CuO–ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gas sensing application. Journal of Alloys and Compounds, 2019, 770: 972–980
https://doi.org/10.1016/j.jallcom.2018.08.205
39 C Wang, J W Zhu, S M Liang, et al.. Reduced graphene oxide decorated with CuO–ZnO hetero-junctions: towards high selective gas-sensing property to acetone. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(43): 18635–18643
https://doi.org/10.1039/C4TA03931A
40 H J Li, N Zhang, X L Zhao, et al.. Modulation of TEA and methanol gas sensing by ion-exchange based on a sacrificial template 3D diamond-shaped MOF. Sensors and Actuators B: Chemical, 2020, 315: 128136
https://doi.org/10.1016/j.snb.2020.128136
41 M L Yin, F Wang, H B Fan, et al.. Heterojunction CuO@ZnO microcubes for superior p-type gas sensor application. Journal of Alloys and Compounds, 2016, 672: 374–379
https://doi.org/10.1016/j.jallcom.2016.02.197
42 C Yang, X Cao, S Wang, et al.. Complex-directed hybridization of CuO/ZnO nanostructures and their gas sensing and photocatalytic properties. Ceramics International, 2015, 41(1): 1749–1756
https://doi.org/10.1016/j.ceramint.2014.09.120
43 X Liu, Y Sun, M Yu, et al.. Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sensors and Actuators B: Chemical, 2018, 255: 3384–3390
https://doi.org/10.1016/j.snb.2017.09.165
44 Y B Zhang, J Yin, L Li, et al.. Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sensors and Actuators B: Chemical, 2014, 202: 500–507
https://doi.org/10.1016/j.snb.2014.05.111
45 Z Y Yuan, C Yang, F L Meng. Strategies for improving the sensing performance of semiconductor gas sensors for high-performance formaldehyde detection: a review. Chemosensors, 2021, 9(7): 179
https://doi.org/10.3390/chemosensors9070179
46 M A Han, H J Kim, H C Lee, et al.. Effects of porosity and particle size on the gas sensing properties of SnO2 films. Applied Surface Science, 2019, 481: 133–137
https://doi.org/10.1016/j.apsusc.2019.03.043
47 H B Ren, W Zhao, L Y Wang, et al.. Preparation of porous flower-like SnO2 micro/nano structures and their enhanced gas sensing property. Journal of Alloys and Compounds, 2015, 653: 611–618
https://doi.org/10.1016/j.jallcom.2015.09.065
48 S F Shao, X Chen, Y Y Chen, et al.. ZnO nanosheets modified with graphene quantum dots and SnO2 quantum nanoparticles for room-temperature H2S sensing. ACS Applied Nano Materials, 2020, 3(6): 5220–5230
https://doi.org/10.1021/acsanm.0c00642
49 Q A Drmosh, Y A Al Wajih, I O Alade, et al.. Engineering the depletion layer of Au-modified ZnO/Ag core–shell films for high-performance acetone gas sensing. Sensors and Actuators B: Chemical, 2021, 338: 129851
https://doi.org/10.1016/j.snb.2021.129851
50 T Lin, X Lv, Z Hu, et al.. Semiconductor metal oxides as chemoresistive sensors for detecting volatile organic compounds. Sensors, 2019, 19(2): 233
https://doi.org/10.3390/s19020233 pmid: 30634523
51 S Samadi, M Nouroozshad, S A Zakaria. ZnO@SiO2/rGO core/shell nanocomposite: a superior sensitive, selective and reproducible performance for 1-propanol gas sensor at room temperature. Materials Chemistry and Physics, 2021, 271: 124884
https://doi.org/10.1016/j.matchemphys.2021.124884
52 C H Han, X W Li, C L Shao, et al.. Composition-controllable p-CuO/n-ZnO hollow nanofibers for high performance H2S detection. Sensors and Actuators B: Chemical, 2019, 285: 495–503
https://doi.org/10.1016/j.snb.2019.01.077
53 Y H Navale, S T Navale, F J Stadler, et al.. Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceramics International, 2019, 45(2): 1513–1522
https://doi.org/10.1016/j.ceramint.2018.10.022
54 R N Mariammal, K Ramachandran. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Materials Research Bulletin, 2018, 100: 420–428
https://doi.org/10.1016/j.materresbull.2017.12.046
[1] Yanqiu YU, Shantang LIU. Facile synthesis of Ni-doped SnO2 nanorods and their high gas sensitivity to isopropanol[J]. Front. Mater. Sci., 2022, 16(1): 220585-.
[2] Chao WANG, Wu WANG, Ke HE, Shantang LIU. Pr-doped In2O3 nanocubes induce oxygen vacancies for enhancing triethylamine gas-sensing performance[J]. Front. Mater. Sci., 2019, 13(2): 174-185.
[3] Shaoming SHU, Chao WANG, Shantang LIU. Facile synthesis of perfect ZnSn(OH)6 octahedral microcrystallines with controlled size and high sensing performance towards ethanol[J]. Front. Mater. Sci., 2018, 12(2): 176-183.
[4] Sunil Jagannath PATIL,Arun Vithal PATIL,Chandrakant Govindrao DIGHAVKAR,Kashinath Shravan THAKARE,Ratan Yadav BORASE,Sachin Jayaram NANDRE,Nishad Gopal DESHPANDE,Rajendra Ramdas AHIRE. Semiconductor metal oxide compounds based gas sensors: A literature review[J]. Front. Mater. Sci., 2015, 9(1): 14-37.
[5] ZHANG Yinhong, HE Yunqiu. Micro-structure of graphite-intercalated tin oxide and its influence on SnO2-based gas sensors[J]. Front. Mater. Sci., 2007, 1(3): 297-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed