Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (2) : 220602    https://doi.org/10.1007/s11706-022-0602-z
RESEARCH ARTICLE
A novel bird-nest-like air superoleophobic/superhydrophilic Cu(OH)2-based composite coating for efficient oil–water separation
Zhiwei ZENG1, Xinzhu WU1, Yan LIU1(), Lulu LONG1, Bo WANG2, Lilin WANG1, Gang YANG1, Xiaohong ZHANG1, Fei SHEN1, Yanzong ZHANG1()
1. College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
2. Beijing Municipal Road & Bridge Co., Ltd., Beijing 100045, China
 Download: PDF(34748 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An air superoleophobic/superhydrophilic composite coating with a unique structure was fabricated by oxidation and further modification of the copper mesh, and its design principle was clarified. This unique bird-nest-like configuration gives it instant superhydrophilicity due to the high surface roughness and high polar surface free energy components, while air superoleophobicity is caused by its extremely low dispersive surface free energy components. Furthermore, a water-resistance mechanism was proposed whereby a polyelectrolyte plays a critical role in improving the water-resistance of fluorosurfactants. It can separate oil–water mixtures with high efficiency (98.72%) and high flux (25185 L·m−2·h−1), and can be reused. In addition, our composite coating had certain anti-acid, anti-alkali, anti-salt and anti-sand impact performance. More importantly, after being soaked in water for a long time or being exposed to the air for a long time, it still retained ultra-high air oil contact angle and showed excellent stability, which provided the possibility for practical applications. Thus, these findings offer the potential for significant practical applications in managing oily wastewater and marine oil spill incidents.

Keywords dispersion force      surface tension      free energy      water resistance      oily wastewater     
Corresponding Author(s): Yan LIU,Yanzong ZHANG   
Issue Date: 15 June 2022
 Cite this article:   
Zhiwei ZENG,Xinzhu WU,Yan LIU, et al. A novel bird-nest-like air superoleophobic/superhydrophilic Cu(OH)2-based composite coating for efficient oil–water separation[J]. Front. Mater. Sci., 2022, 16(2): 220602.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0602-z
https://academic.hep.com.cn/foms/EN/Y2022/V16/I2/220602
Fig.1  SEM images of (a)(a1) copper mesh, (b)(b1) CMCH and (c)(c1) CMCH@PDF. (d) Scheme of the fabrication process of CMCH@PDF. 2D and 3D morphologies of (e)(e1) CMCH and (f)(f1) CMCH@PDF.
Element Atomic content/%
CM CMCH CMCH@PDF
Cu 55.63 27.76 10.89
C 40.24 16.19 25.01
O 4.13 56.05 41.33
Si 10.89
N 2.01
F 10.68
Tab.1  EDS data of copper mesh, CMCH and CMCH@PDF
Fig.2  (a) EDS spectrum of CMCH@PDF, (b) distributions of Cu, O, C, N, Si and F on CMCH@PDF, (c) XRD pattern of CMCH, and (d) FTIR spectrum of CMCH@PDF.
Fig.3  (a) WCAs and air OCAs of several samples. (b) The wetting behavior of CMCH@PDF. (c) The sliding process of an edible oil droplet on the CMCH@PDF surface in air. (d) OCAs of some oil droplets on the CMCH@PDF surface in air. (e) A photograph of various oil droplets at the CMCH@PDF surface in air. (f) Ultra-low adhesive in air. (g) The dynamic WCA of CMCH@PDF. (h) The mechanism of superoleophobicity/superhydrophilicity in air.
Coating material Time to become superhydrophilicity Ref.
POSS/x-PEGDA 100 s [44]
CTS-PFO/SiO2 9 min [45]
FECVOO/CaSi > 5 min [46]
PEET/SiO2/PFC 7 min [37]
CM@PDF 2 min this work
CMCH@PDF 0.3 s this work
Tab.2  Hydrophilicity comparison between current results and published articles
Fig.4  (a) Photos showing the diesel/water separation process. (b) Separation efficiencies and fluxes of different oils of CMCH@PDF. (c) Cycle numbers for the diesel/water mixture. (d) The measurement of oil breakthrough pressure in case of diesel on CMCH@PDF. (e) The schematic diagram of the oil–water separation.
Type of oil droplet ρ/(g·mL?1) hmax/cm ΔPo/kPa
Toluene 0.87 17 1.48
Diesel 0.87 19 1.65
Edible oil 0.90 14 1.26
Peanut oil 0.87 15 1.31
Paraffin 0.89 12 1.07
Tab.3  ΔPex values of various oils on CMCH@PDF
Fig.5  Factors influencing the OCA: (a) pH value of the solution for 24 h; (b) soak time of the 3.5% NaCl solution; (c) falling sand cycle number; (d) exposure time of the sample in air; (e) soak time of CMCH@PDF in water; (f) soak time of CMCH@PVF in water. The fluorine contents and distributions of (g) CMCH@PDF soaked in water for 7 d and (h) CMCH@PVF soaked in water for 1 d. (i) The reaction mechanism of CMCH@PDF and CMCH@PVF.
Coating material Experiment time in water Ref.
HACC/PFOA 1 h [36]
FA-PEG-PHP 5 h [53]
AP/SiO2/FS50 5 h [54]
CMCH@PVF 1 d this work
CMCH@PDF 7 d this work
Tab.4  Water resistance time comparison between current results and published articles
1 Z Chu , Y Feng , S Seeger . Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 2015, 54( 8): 2328– 2338
https://doi.org/10.1002/anie.201405785 pmid: 25425089
2 Y Zhao , X Yang , L Yan . et al.. Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. Journal of Membrane Science, 2021, 618 : 118525
https://doi.org/10.1016/j.memsci.2020.118525
3 Y Guo , L Gong , S Gao . et al.. Cupric phosphate mineralized polymer membrane with superior cycle stability for oil/water emulsion separation. Journal of Membrane Science, 2020, 612 : 118427
https://doi.org/10.1016/j.memsci.2020.118427
4 M Schrope . Oil spill: deep wounds. Nature, 2011, 472( 7342): 152– 154
https://doi.org/10.1038/472152a pmid: 21490648
5 B Wang , W Liang , Z Guo . et al.. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015, 44( 1): 336– 361
https://doi.org/10.1039/C4CS00220B pmid: 25311259
6 J Ge , H Y Zhao , H W Zhu . et al.. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Advanced Materials, 2016, 28( 47): 10459– 10490
https://doi.org/10.1002/adma.201601812 pmid: 27731513
7 D D Ma , J W Shi , L W Sun . et al.. Knack behind the high performance CdS/ZnS‒NiS nanocomposites: optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution. Chemical Engineering Journal, 2022, 431 : 133446
https://doi.org/10.1016/j.cej.2021.133446
8 J H Shin , J H Heo , S Jeon . et al.. Bio-inspired hollow PDMS sponge for enhanced oil‒water separation. Journal of Hazardous Materials, 2019, 365 : 494– 501
https://doi.org/10.1016/j.jhazmat.2018.10.078 pmid: 30466047
9 J Li , Y Yang , W Ma . et al.. One-pot room-temperature synthesis of covalent organic framework-coated superhydrophobic sponges for highly efficient oil‒water separation. Journal of Hazardous Materials, 2021, 411 : 125190
https://doi.org/10.1016/j.jhazmat.2021.125190 pmid: 33858120
10 W Li , Y Y Liu , Y Bai . et al.. Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. Journal of Hazardous Materials, 2020, 395 : 122692
https://doi.org/10.1016/j.jhazmat.2020.122692 pmid: 32330785
11 X R Li , X C Yang , H G Xue . et al.. Metal-organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2( 2): 100027
https://doi.org/10.1016/j.enchem.2020.100027
12 S Cao , B Li , R Zhu . et al.. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355 : 602– 623
https://doi.org/10.1016/j.cej.2018.08.184
13 Z Guo , B Long , S Gao . et al.. Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation. Journal of Hazardous Materials, 2021, 402 : 123838
https://doi.org/10.1016/j.jhazmat.2020.123838 pmid: 33254815
14 X Gao , L P Xu , Z Xue . et al.. Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. Advanced Materials, 2014, 26( 11): 1771– 1775
https://doi.org/10.1002/adma.201304487 pmid: 24347397
15 Z W Zeng , Y Liu , L Long . et al.. Fabrication of novel superhydrophilic/underwater superoleophobic composite coatings and study on the relationship between their long-term wettability and excellent oil‒water separation performance. Surface and Coatings Technology, 2022, 434 : 128193
https://doi.org/10.1016/j.surfcoat.2022.128193
16 S Yang , Y Si , Q Fu . et al.. Superwetting hierarchical porous silica nanofibrous membranes for oil/water microemulsion separation. Nanoscale, 2014, 6( 21): 12445– 12449
https://doi.org/10.1039/C4NR04668D pmid: 25260122
17 Y Shi , W Yang , X Feng . et al.. Fabrication of superhydrophobic-superoleophilic copper mesh via thermal oxidation and its application in oil‒water separation. Applied Surface Science, 2016, 367 : 493– 499
https://doi.org/10.1016/j.apsusc.2016.01.233
18 M Tenjimbayashi , K Sasaki , T Matsubayashi . et al.. A biologically inspired attachable, self-standing nanofibrous membrane for versatile use in oil‒water separation. Nanoscale, 2016, 8( 21): 10922– 10927
https://doi.org/10.1039/C6NR03349K pmid: 27188304
19 H Wang , F Gao , R Ren . et al.. Caffeic acid polymer rapidly modified sponge with excellent anti-oil-adhesion property and efficient separation of oil-in-water emulsions. Journal of Hazardous Materials, 2021, 404( Pt B): 124197
https://doi.org/10.1016/j.jhazmat.2020.124197 pmid: 33091695
20 Y Long , Y Shen , H Tian . et al.. Superwettable coprinus comatus coated membranes used toward the controllable separation of emulsified oil/water mixtures. Journal of Membrane Science, 2018, 565 : 85– 94
https://doi.org/10.1016/j.memsci.2018.08.013
21 X Wang , M Li , Y Shen . et al.. Facile preparation of loess-coated membranes for multifunctional surfactant stabilized oil-in-water emulsion separation. Green Chemistry, 2019, 21( 11): 3190– 3199
https://doi.org/10.1039/C9GC00747D
22 Z Y Luo , S S Lyu , D C Mo . Cauliflower-like nickel with polar Ni(OH)2/NiOxFy shell to decorate copper meshes for efficient oil/water separation. ACS Omega, 2019, 4( 24): 20486– 20492
https://doi.org/10.1021/acsomega.9b02152 pmid: 31858032
23 Z W Zeng , X Z Wu , Y Liu . et al.. Fabrication of a durable coral-like superhydrophilic MgO coating on stainless steel mesh for efficient oil/water separation. Chemical Engineering Science, 2022, 248 : 117144
https://doi.org/10.1016/j.ces.2021.117144
24 S Zhang , G Jiang , S Gao . et al.. Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation. ACS Nano, 2018, 12( 1): 795– 803
https://doi.org/10.1021/acsnano.7b08121 pmid: 29298377
25 J Dai , L Wang , Y Wang . et al.. Robust nacre-like graphene oxide‒calcium carbonate hybrid mesh with underwater superoleophobic property for highly efficient oil/water separation. ACS Applied Materials & Interfaces, 2020, 12( 4): 4482– 4493
https://doi.org/10.1021/acsami.9b18664 pmid: 31894968
26 L Yan , P Li , W Zhou . et al.. Shrimp shell inspired antifouling chitin nanofibrous membrane for efficient oil/water emulsion separation with in situ removal of heavy metal ions. ACS Sustainable Chemistry & Engineering, 2019, 7( 2): 2064– 2072
https://doi.org/10.1021/acssuschemeng.8b04511
27 W Zhang , Y Zhu , X Liu . et al.. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angewandte Chemie International Edition, 2014, 53( 3): 856– 860
https://doi.org/10.1002/anie.201308183 pmid: 24307602
28 J B Fan , Y Song , S Wang . et al.. Directly coating hydrogel on filter paper for effective oil‒water separation in highly acidic, alkaline, and salty environment. Advanced Functional Materials, 2015, 25( 33): 5368– 5375
https://doi.org/10.1002/adfm.201501066
29 J Chen , Y Zhang , C Chen . et al.. Cellulose sponge with superhydrophilicity and high oleophobicity both in air and under water for efficient oil‒water emulsion separation. Macromolecular Materials and Engineering, 2017, 302( 9): 1700086
https://doi.org/10.1002/mame.201700086
30 J Yang , Z Zhang , X Xu . et al.. Superhydrophilic/superoleophobic coatings. Journal of Materials Chemistry, 2012, 22( 7): 2834– 2837
https://doi.org/10.1039/c2jm15987b
31 M Qu , X Ma , J He . et al.. Facile selective and diverse fabrication of superhydrophobic, superoleophobic-superhydrophilic and superamphiphobic materials from kaolin. ACS Applied Materials & Interfaces, 2017, 9( 1): 1011– 1020
https://doi.org/10.1021/acsami.6b10964 pmid: 27959496
32 S Amirpoor , R S Moakhar , A Dolati . A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water. Surface and Coatings Technology, 2020, 394 : 125859
https://doi.org/10.1016/j.surfcoat.2020.125859
33 F Li , Z Wang , S Huang . et al.. Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil‒water separation. Advanced Functional Materials, 2018, 28( 20): 1706867
https://doi.org/10.1002/adfm.201706867
34 Y Pan , S Huang , F Li . et al.. Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 31): 15057– 15063
https://doi.org/10.1039/C8TA04725A
35 K Zhang , D Kujawski , C Spurrell . et al.. Extraction of PFOA from dilute wastewater using ionic liquids that are dissolved in N-octanol. Journal of Hazardous Materials, 2021, 404( Pt B): 124091
https://doi.org/10.1016/j.jhazmat.2020.124091 pmid: 33212410
36 W Xiong , L Li , F Qiao . et al.. Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability. Journal of Colloid and Interface Science, 2021, 600 : 118– 126
https://doi.org/10.1016/j.jcis.2021.05.004 pmid: 34010769
37 J Yang , L Yin , H Tang . et al.. Polyelectrolyte-fluorosurfactant complex-based meshes with superhydrophilicity and superoleophobicity for oil/water separation. Chemical Engineering Journal, 2015, 268 : 245– 250
https://doi.org/10.1016/j.cej.2015.01.073
38 C Ma , L Zhu , X R Qiao . et al.. Ni-doped brochantite@copper hydroxide hierarchical structures on copper mesh with ultrahigh oil-resistance for high-efficiency oil/water separation. Surface and Coatings Technology, 2021, 406 : 126642
https://doi.org/10.1016/j.surfcoat.2020.126642
39 C Dai , N Liu , Y Cao . et al.. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter, 2014, 10( 40): 8116– 8121
https://doi.org/10.1039/C4SM01616E pmid: 25177922
40 C Long , Y Q Qing , K An . et al.. Functional fluorination agents for opposite extreme wettability coatings with robustness, water splash inhibition, and controllable oil transport. Chemical Engineering Journal, 2021, 415 : 128895
https://doi.org/10.1016/j.cej.2021.128895
41 Y Lu , J Song , X Liu . et al.. Preparation of superoleophobic and superhydrophobic titanium surfaces via an environmentally friendly electrochemical etching method. ACS Sustainable Chemistry & Engineering, 2013, 1( 1): 102– 109
https://doi.org/10.1021/sc3000527
42 F M Fowkes , Y C Huang , B A Shah . et al.. Surface and colloid chemical studies of gamma iron oxides for magnetic memory media. Colloids and Surfaces, 1988, 29( 3): 243– 261
https://doi.org/10.1016/0166-6622(88)80121-5
43 F Li , B Bhushan , Y Pan . et al.. Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil‒water mixtures and oil‒water emulsions. Journal of Colloid and Interface Science, 2019, 548 : 123– 130
https://doi.org/10.1016/j.jcis.2019.04.031 pmid: 30986711
44 A K Kota , G Kwon , W Choi . et al.. Hygro-responsive membranes for effective oil‒water separation. Nature Communications, 2012, 3( 1): 1025
https://doi.org/10.1038/ncomms2027 pmid: 22929782
45 J Yang , H Song , X Yan . et al.. Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose, 2014, 21( 3): 1851– 1857
https://doi.org/10.1007/s10570-014-0244-0
46 T Saito , Y Tsushima , H Sawada . Facile creation of superoleophobic and superhydrophilic surface by using fluoroalkyl end-capped vinyltrimethoxysilane oligomer/calcium silicide nanocomposites-development of these nanocomposites to environmental cyclical type-fluorine recycle through formation of calcium fluoride. Colloid & Polymer Science, 2015, 293( 1): 65– 73
https://doi.org/10.1007/s00396-014-3387-5
47 C Zhou , J Feng , J Cheng . et al.. Opposite superwetting nickel meshes for on-demand and continuous oil/water separation. Industrial & Engineering Chemistry Research, 2018, 57( 3): 1059– 1070
https://doi.org/10.1021/acs.iecr.7b04517
48 S Mosadegh-Sedghi , D Rodrigue , J Brisson . et al.. Wetting phenomenon in membrane contactors-causes and prevention. Journal of Membrane Science, 2014, 452 : 332– 353
https://doi.org/10.1016/j.memsci.2013.09.055
49 C Zhou , Z Chen , H Yang . et al.. Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Applied Materials & Interfaces, 2017, 9( 10): 9184– 9194
https://doi.org/10.1021/acsami.7b00412 pmid: 28222262
50 C L Zhou , J Cheng , K Hou . et al.. Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chemical Engineering Journal, 2016, 301 : 249– 256
https://doi.org/10.1016/j.cej.2016.05.026
51 F Zhang , W B Zhang , Z Shi . et al.. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Advanced Materials, 2013, 25( 30): 4192– 4198
https://doi.org/10.1002/adma.201301480 pmid: 23788392
52 C L Zhou , A Zhao , J Cheng . et al.. CuC2O4 nanoribbons on copper mesh with underwater superoleophobicity for oil/water separation. Materials Letters, 2016, 185 : 403– 406
https://doi.org/10.1016/j.matlet.2016.09.031
53 H Zhou , H Wang , W Yang . et al.. Durable superoleophobic-superhydrophilic fabrics with high anti-oil-fouling property. RSC Advances, 2018, 8( 47): 26939– 26947
https://doi.org/10.1039/C8RA04645J
54 Y Sun , Z Guo . Novel and cutting-edge applications for a solvent-responsive superoleophobic-superhydrophilic surface: water-infused omniphobic surface and separating organic liquid mixtures. Chemical Engineering Journal, 2020, 381 : 122629
https://doi.org/10.1016/j.cej.2019.122629
[1] FMS-22602-OF-Zzw_suppl_1 Download
[2] FMS-22602-OF-Zzw_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed