|
|
|
Nanotheranostics and its role in diagnosis, treatment and prevention of COVID-19 |
Lipsa Leena PANIGRAHI, Banishree SAHOO, Manoranjan ARAKHA( ) |
| Center for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India |
|
|
|
|
Abstract Microbe-related, especially viral-related pandemics have currently paralyzed the world and such pathogenesis is expected to rise in the upcoming years. Although tremendous efforts are being made to develop antiviral drugs, very limited progress has been made in this direction. The nanotheranostic approach can be a highly potential rescue to combat this pandemic. Nanoparticles (NPs) due to their high specificity and biofunctionalization ability could be utilized efficiently for prophylaxis, diagnosis and treatment against microbial infections. In this context, titanium oxide, silver, gold NPs, etc. have already been utilized against deadly viruses like influenza, Ebola, HIV, and HBV. The discovery of sophisticated nanovaccines is under investigation and of prime importance to induce reproducible and strong immune responses against difficult pathogens. This review focuses on highlighting the role of various nano-domain materials such as metallic NPs, magnetic NPs, and quantum dots in the biomedical applications to combat the deadly microbial infections. Further, it also discusses the nanovaccines those are already available for various microbial diseases or are in clinical trials. Finally, it gives a perspective on the various nanotechnologies presently employed for efficient diagnosis and therapy against disease causing microbial infections, and how advancement in this field can benefit the health sector remarkably.
|
| Keywords
nanotheranostics
nanovaccine
antimicrobial
antiviral
SARS-CoV-2
|
|
Corresponding Author(s):
Manoranjan ARAKHA
|
|
Issue Date: 14 July 2022
|
|
| 1 |
P I, Siafaka N Ü, Okur I D, Karantas , et al.. Current update on nanoplatforms as therapeutic and diagnostic tools: a review for the materials used as nanotheranostics and imaging modalities. Asian Journal of Pharmaceutical Sciences, 2021, 16( 1): 24– 46
https://doi.org/10.1016/j.ajps.2020.03.003
pmid: 33613728
|
| 2 |
M S, Muthu D T, Leong L, Mei , et al.. Nanotheranostics — application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014, 4( 6): 660– 677
https://doi.org/10.7150/thno.8698
pmid: 24723986
|
| 3 |
M, Mendes J J, Sousa A, Pais , et al.. Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics, 2018, 10( 4): 181
https://doi.org/10.3390/pharmaceutics10040181
pmid: 30304861
|
| 4 |
M, Rai M, Razzagh-Abyaneh A P Ingle, eds. Nanobiotechnology in Diagnosis, Drug Delivery and Treatment. Wiley, 2020
|
| 5 |
J M, Caster A N, Patel T, Zhang , et al.. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9( 1): e1416
https://doi.org/10.1002/wnan.1416
pmid: 27312983
|
| 6 |
A R, Kirtane M, Verma P, Karandikar , et al.. Nanotechnology approaches for global infectious diseases. Nature Nanotechnology, 2021, 16( 4): 369– 384
https://doi.org/10.1038/s41565-021-00866-8
pmid: 33753915
|
| 7 |
P I, Siafaka N U, Okur E, Karavas , et al.. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. International Journal of Molecular Sciences, 2016, 17( 9): 1440
https://doi.org/10.3390/ijms17091440
pmid: 27589733
|
| 8 |
A, Roy S S, Gauri M, Bhattacharya , et al.. Antimicrobial activity of CaO nanoparticles. Journal of Biomedical Nanotechnology, 2013, 9( 9): 1570– 1578
https://doi.org/10.1166/jbn.2013.1681
pmid: 23980504
|
| 9 |
P V, Baptista M P, McCusker A, Carvalho , et al.. Nano-strategies to fight multidrug resistant bacteria — “A Battle of the Titans”. Frontiers in Microbiology, 2018, 9 : 1441
https://doi.org/10.3389/fmicb.2018.01441
pmid: 30013539
|
| 10 |
Santos Ramos M A, Dos Silva P B, Da L, Spósito , et al.. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. International Journal of Nanomedicine, 2018, 13 : 1179– 1213
https://doi.org/10.2147/IJN.S146195
pmid: 29520143
|
| 11 |
M, Rai A P, Ingle S, Gaikwad , et al.. Nanotechnology based anti-infectives to fight microbial intrusions. Journal of Applied Microbiology, 2016, 120( 3): 527– 542
https://doi.org/10.1111/jam.13010
pmid: 26599354
|
| 12 |
M, Sharma T, Dube S, Chibh , et al.. Nanotheranostics, a future remedy of neurological disorders. Expert Opinion on Drug Delivery, 2019, 16( 2): 113– 128
https://doi.org/10.1080/17425247.2019.1562443
pmid: 30572726
|
| 13 |
R, Shanker G, Singh A, Jyoti , et al.. Nanotechnology and detection of microbial pathogens. In: Animal Biotechnology. Elsevier, 2014, 525– 540
|
| 14 |
T, Dube A, Ghosh J, Mishra , et al.. Repurposed drugs, molecular vaccines, immune-modulators, and nanotherapeutics to treat and prevent COVID-19 associated with SARS-CoV-2, a deadly nanovector. Advanced Therapeutics, 2021, 4( 2): 2000172
https://doi.org/10.1002/adtp.202000172
pmid: 33173808
|
| 15 |
B S, Das A, Das A, Mishra , et al.. Microbial cells as biological factory for nanoparticle synthesis. Frontiers of Materials Science, 2021, 15( 2): 177– 191
https://doi.org/10.1007/s11706-021-0546-8
|
| 16 |
S, Panda K K, Yadav P S, Nayak , et al.. Screening of metal-resistant coal mine bacteria for biofabrication of elemental silver nanoparticle. Bulletin of Materials Science, 2016, 39( 2): 397– 404
https://doi.org/10.1007/s12034-016-1181-3
|
| 17 |
M, Sharma P S, Nayak S, Asthana , et al.. Biofabrication of silver nanoparticles using bacteria from mangrove swamp. IET Nanobiotechnology, 2018, 12( 5): 626– 632
https://doi.org/10.1049/iet-nbt.2017.0205
pmid: 30095424
|
| 18 |
A J, Grippin B, Wummer T, Wildes , et al.. Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano, 2019, 13( 12): 13884– 13898
https://doi.org/10.1021/acsnano.9b05037
pmid: 31730332
|
| 19 |
T, Yadavalli D Shukla . Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13( 1): 219– 230
https://doi.org/10.1016/j.nano.2016.08.016
pmid: 27575283
|
| 20 |
V, Palmieri M Papi . Can graphene take part in the fight against COVID-19?. Nano Today, 2020, 33 : 100883
https://doi.org/10.1016/j.nantod.2020.100883
pmid: 32382315
|
| 21 |
M D, Shin S, Shukla Y H, Chung , et al.. COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology, 2020, 15( 8): 646– 655
https://doi.org/10.1038/s41565-020-0737-y
pmid: 32669664
|
| 22 |
Carthy D J, Mc M, Malhotra A M, O’Mahony , et al.. Nanoparticles and the blood–brain barrier: advancing from in-vitro models towards therapeutic significance. Pharmaceutical Research, 2015, 32( 4): 1161– 1185
https://doi.org/10.1007/s11095-014-1545-6
pmid: 25446769
|
| 23 |
G, Dollo Y, Boucaud M, Amela-Cortes , et al.. PLGA nanoparticles embedding molybdenum cluster salts: influence of chemical composition on physico-chemical properties, encapsulation efficiencies, colloidal stabilities and in vitro release. International Journal of Pharmaceutics, 2020, 576 : 119025
https://doi.org/10.1016/j.ijpharm.2020.119025
pmid: 31926277
|
| 24 |
N, Pandey J U, Menon M, Takahashi , et al.. Thermo-responsive fluorescent nanoparticles for multimodal imaging and treatment of cancers. Nanotheranostics, 2020, 4( 1): 1– 13
https://doi.org/10.7150/ntno.39810
pmid: 31911890
|
| 25 |
F, Martinez-Gutierrez P L, Olive A, Banuelos , et al.. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6( 5): 681– 688
https://doi.org/10.1016/j.nano.2010.02.001
pmid: 20215045
|
| 26 |
A, Lipovsky Y, Nitzan A, Gedanken , et al.. Antifungal activity of ZnO nanoparticles — the role of ROS mediated cell injury. Nanotechnology, 2011, 22( 10): 105101
https://doi.org/10.1088/0957-4484/22/10/105101
pmid: 21289395
|
| 27 |
M, Arakha S, Pal D, Samantarrai , et al.. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 2015, 5( 1): 14813
https://doi.org/10.1038/srep14813
pmid: 26437582
|
| 28 |
S, Khizar N M, Ahmad N, Zine , et al.. Magnetic nanoparticles: from synthesis to theranostic applications. ACS Applied Nano Materials, 2021, 4( 5): 4284– 4306
https://doi.org/10.1021/acsanm.1c00852
|
| 29 |
R S, Chouhan M, Horvat J, Ahmed , et al.. Magnetic nanoparticles — a multifunctional potential agent for diagnosis and therapy. Cancers, 2021, 13( 9): 2213
https://doi.org/10.3390/cancers13092213
pmid: 34062991
|
| 30 |
M A Cotta . Quantum dots and their applications: what lies ahead?. ACS Applied Nano Materials, 2020, 3( 6): 4920– 4924
https://doi.org/10.1021/acsanm.0c01386
|
| 31 |
A, Valizadeh H, Mikaeili M, Samiei , et al.. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Research Letters, 2012, 7( 1): 480
https://doi.org/10.1186/1556-276X-7-480
pmid: 22929008
|
| 32 |
M, Arakha M, Saleem B C, Mallick , et al.. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports, 2015, 5( 1): 9578
https://doi.org/10.1038/srep09578
pmid: 25873247
|
| 33 |
J, Nakane M, Wiggin A Marziali . A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophysical Journal, 2004, 87( 1): 615– 621
https://doi.org/10.1529/biophysj.104.040212
pmid: 15240494
|
| 34 |
P S, Nayak S, Pradhan M, Arakha , et al.. Silver nanoparticles fabricated using medicinal plant extracts show enhanced antimicrobial and selective cytotoxic propensities. IET Nanobiotechnology, 2019, 13( 2): 193– 201
https://doi.org/10.1049/iet-nbt.2018.5025
|
| 35 |
P S, Nayak M, Arakha A, Kumar , et al.. An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Advances, 2016, 6( 10): 8232– 8242
https://doi.org/10.1039/C5RA21281B
|
| 36 |
M, Arakha S M, Borah M, Saleem , et al.. Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin. Free Radical Biology & Medicine, 2016, 101 : 434– 445
https://doi.org/10.1016/j.freeradbiomed.2016.11.016
pmid: 27845185
|
| 37 |
L, Liu K, Xu H, Wang , et al.. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nature Nanotechnology, 2009, 4( 7): 457– 463
https://doi.org/10.1038/nnano.2009.153
pmid: 19581900
|
| 38 |
X, Zhu A F, Radovic-Moreno J, Wu , et al.. Nanomedicine in the management of microbial infection — overview and perspectives. Nano Today, 2014, 9( 4): 478– 498
https://doi.org/10.1016/j.nantod.2014.06.003
pmid: 25267927
|
| 39 |
A Singh . Eliciting B cell immunity against infectious diseases using nanovaccines. Nature Nanotechnology, 2021, 16( 1): 16– 24
https://doi.org/10.1038/s41565-020-00790-3
pmid: 33199883
|
| 40 |
F, Xu Q, Xia P Wang . Rationally designed DNA nanostructures for drug delivery. Frontiers in Chemistry, 2020, 8 : 751
https://doi.org/10.3389/fchem.2020.00751
pmid: 33195016
|
| 41 |
Y, Wang L, Dai Z, Ding , et al.. DNA origami single crystals with Wulff shapes. Nature Communications, 2021, 12( 1): 3011
https://doi.org/10.1038/s41467-021-23332-4
pmid: 34021131
|
| 42 |
X, Zhao S Zhang . Fabrication of molecular materials using peptide construction motifs. Trends in Biotechnology, 2004, 22( 9): 470– 476
https://doi.org/10.1016/j.tibtech.2004.07.011
pmid: 15331228
|
| 43 |
S, Hong D W, Choi H N, Kim , et al.. Protein-based nanoparticles as drug delivery systems. Pharmaceutics, 2020, 12( 7): 604
https://doi.org/10.3390/pharmaceutics12070604
pmid: 32610448
|
| 44 |
S Y, Madani F, Shabani M V, Dwek , et al.. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. International Journal of Nanomedicine, 2013, 8 : 941– 950
https://doi.org/10.2147/IJN.S36416
pmid: 23487255
|
| 45 |
J H, Sung D, Han J B Lee . Self-assembled DNA-based giant thrombin nanoparticles for controlled release. Biotechnology Journal, 2013, 8( 2): 215– 220
https://doi.org/10.1002/biot.201200312
pmid: 23297045
|
| 46 |
H, Zhang D, Yee C Wang . Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine, 2008, 3( 1): 83– 91
https://doi.org/10.2217/17435889.3.1.83
|
| 47 |
M, Zheng S, Ruan S, Liu , et al.. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano, 2015, 9( 11): 11455– 11461
https://doi.org/10.1021/acsnano.5b05575
pmid: 26458137
|
| 48 |
V, Chaudhary A, Royal M, Chavali , et al.. Advancements in research and development to combat COVID-19 using nanotechnology. Nanotechnology for Environmental Engineering, 2021, 6( 1): 8
https://doi.org/10.1007/s41204-021-00102-7
|
| 49 |
J P, Martinez F, Sasse M, Brönstrup , et al.. Antiviral drug discovery: broad-spectrum drugs from nature. Natural Product Reports, 2015, 32( 1): 29– 48
https://doi.org/10.1039/C4NP00085D
pmid: 25315648
|
| 50 |
M, Saravanan E, Mostafavi S, Vincent , et al.. Nanotechnology-based approaches for emerging and re-emerging viruses: special emphasis on COVID-19. Microbial Pathogenesis, 2021, 156 : 104908
https://doi.org/10.1016/j.micpath.2021.104908
pmid: 33932543
|
| 51 |
W, Zhang L, Huang G, Ye , et al.. Vaccine booster efficiently inhibits entry of SARS-CoV-2 Omicron variant. Cellular & Molecular Immunology, 2022, 19( 3): 445– 446
https://doi.org/10.1038/s41423-022-00837-6
pmid: 35075267
|
| 52 |
Y, Wang L, Zhang Q, Li , et al.. The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerging Microbes & Infections, 2022, 11( 1): 1– 5
https://doi.org/10.1080/22221751.2021.2017757
pmid: 34890524
|
| 53 |
G I Fouad . A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). Bulletin of the National Research Center, 2021, 45( 1): 36
https://doi.org/10.1186/s42269-021-00487-0
pmid: 33564223
|
| 54 |
N Y, Lee W C, Ko P R Hsueh . Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology, 2019, 10 : 1153
https://doi.org/10.3389/fphar.2019.01153
pmid: 31636564
|
| 55 |
D A, Mosselhy M A, Assad T, Sironen , et al.. Could nanotheranostics be the answer to the coronavirus crisis?. Global Challenges, 2021, 5( 6): 2000112
https://doi.org/10.1002/gch2.202000112
pmid: 34141446
|
| 56 |
H, Gruell K, Vanshylla P, Tober-Lau , et al.. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nature Medicine, 2022, 28( 3): 477– 480
https://doi.org/10.1038/s41591-021-01676-0
pmid: 35046572
|
| 57 |
W, Dejnirattisai J, Huo D, Zhou , et al.. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 2022, 185( 3): 467
https://doi.org/10.1016/j.cell.2021.12.046
pmid: 35081335
|
| 58 |
D, Planas N, Saunders P, Maes , et al.. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 2022, 602( 7898): 671– 675
https://doi.org/10.1038/s41586-021-04389-z
pmid: 35016199
|
| 59 |
P A, Christensen R J, Olsen S W, Long , et al.. Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with coronavirus disease 2019 caused by the omicron variant of severe acute respiratory syndrome coronavirus 2 in houston, Texas. The American Journal of Pathology, 2022, 192( 4): 642– 652
https://doi.org/10.1016/j.ajpath.2022.01.007
pmid: 35123975
|
| 60 |
A A, Yetisgin S, Cetinel M, Zuvin , et al.. Therapeutic nanoparticles and their targeted delivery applications. Molecules, 2020, 25( 9): 2193
https://doi.org/10.3390/molecules25092193
pmid: 32397080
|
| 61 |
A, Parodi R, Molinaro M, Sushnitha , et al.. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials, 2017, 147 : 155– 168
https://doi.org/10.1016/j.biomaterials.2017.09.020
pmid: 28946131
|
| 62 |
S, Dey C, Fan K V, Gothelf , et al.. DNA origami. Nature Reviews Methods Primers, 2021, 1( 1): 13
https://doi.org/10.1038/s43586-020-00009-8
|
| 63 |
D, Li L, Tao Y, Shen , et al.. Fabrication of multilayered nanofiber scaffolds with a highly aligned nanofiber yarn for anisotropic tissue regeneration. ACS Omega, 2020, 5( 38): 24340– 24350
https://doi.org/10.1021/acsomega.0c02554
pmid: 33015450
|
| 64 |
M, Marradi F, Chiodo I, García , et al.. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chemical Society Reviews, 2013, 42( 11): 4728– 4745
https://doi.org/10.1039/c2cs35420a
pmid: 23288339
|
| 65 |
A, Eatemadi H, Daraee H, Karimkhanloo , et al.. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Research Letters, 2014, 9( 1): 393
https://doi.org/10.1186/1556-276X-9-393
pmid: 25170330
|
| 66 |
S, Chibh V, Katoch A, Kour , et al.. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core‒shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomaterials Science, 2021, 9( 3): 942– 959
https://doi.org/10.1039/D0BM01386B
pmid: 33559658
|
| 67 |
S, Chibh A, Kour N, Yadav , et al.. Redox-responsive dipeptide nanostructures toward targeted cancer therapy. ACS Omega, 2020, 5( 7): 3365– 3375
https://doi.org/10.1021/acsomega.9b03547
pmid: 32118151
|
| 68 |
E, Abbasi S F, Aval A, Akbarzadeh , et al.. Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters, 2014, 9( 1): 247
https://doi.org/10.1186/1556-276X-9-247
pmid: 24994950
|
| 69 |
C, Bharti U, Nagaich A K, Pal , et al.. Mesoporous silica nanoparticles in target drug delivery system: a review. International Journal of Pharmaceutical Investigation, 2015, 5( 3): 124– 133
https://doi.org/10.4103/2230-973X.160844
pmid: 26258053
|
| 70 |
S, Mukherjee S, Ray R S Thakur . Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 2009, 71( 4): 349– 358
https://doi.org/10.4103/0250-474X.57282
pmid: 20502539
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|