Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (1) : 230636    https://doi.org/10.1007/s11706-023-0636-x
LETTER
Fabrication of MOF-based composite for synergistic catalysis
Xin Zhou1, Yanhu Zhang1, Weiqiang Zhou2,3(), Chen Zhou3, Quan Wang1,4()
1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
2. Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
3. Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
4. State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
 Download: PDF(2050 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Weiqiang Zhou,Quan Wang   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 03 March 2023
 Cite this article:   
Xin Zhou,Yanhu Zhang,Weiqiang Zhou, et al. Fabrication of MOF-based composite for synergistic catalysis[J]. Front. Mater. Sci., 2023, 17(1): 230636.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0636-x
https://academic.hep.com.cn/foms/EN/Y2023/V17/I1/230636
Fig.1  Schematic illustration of the fabrication of the Pd/66/SA–CaCl2 catalyst.
Fig.2  SEM images of (a)(b) as-prepared Pd/66/SA and (c)(d) Pd/66/SA–CaCl2.
Fig.3  (a) XRD patterns of simulated UiO-66, SA, Pd/66/SA, and Pd/66/SA–CaCl2. (b) N2 adsorption–desorption isotherms of SA, Pd/66/SA, and Pd/66/SA–CaCl2.
SubstrateConversion efficiency/%
Pd/UiO-66Pd/66/SA–CaCl2
Styrene99.295.7
Cyclohexene58.156.2
Hexene86.383.4
Cyclooctene29.627.8
Tab.1  Catalytic activity of Pd/UiO-66 and Pd/66/SA–CaCl2 in the hydrogenation of olefins
Cycle numberConversion efficiency/%
Pd/66/SA–CaCl2Pd/UiO-66
195.799.2
294.681.8
391.352.3
489.223.5
588.10
Tab.2  Reusability of Pd/UiO-66 and Pd/66/SA–CaCl2 for the hydrogenation of styrene over five consecutive runs
1 Deelen T W, van C H, Mejía Jong K P de . Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity.Nature Catalysis, 2019, 2(11): 955–970
https://doi.org/10.1038/s41929-019-0364-x
2 C M, Friend B Xu . Heterogeneous catalysis: a central science for a sustainable future.Accounts of Chemical Research, 2017, 50(3): 517–521
https://doi.org/10.1021/acs.accounts.6b00510 pmid: 28945397
3 M A K, Zarchi F, Hajati B F Mirjalili . Synthesis of 2, 3-dihydroquinazolin-4(1H)-ones promoted by an efficient, inexpensive and reusable heterogeneous Lewis acid catalyst.Journal of Polymer Research, 2022, 29(6): 252
https://doi.org/10.1007/s10965-022-03108-0
4 W, Zhou W L, Teo D, Wang et al.. Efficient noble-metal-free catalysts supported by three-dimensional ordered hierarchical porous carbon.Chemistry: An Asian Journal, 2020, 15(16): 2513–2519
https://doi.org/10.1002/asia.202000643 pmid: 32583605
5 H, Wang L, Wang F S Xiao . Metal@zeolite hybrid materials for catalysis.ACS Central Science, 2020, 6(10): 1685–1697
https://doi.org/10.1021/acscentsci.0c01130 pmid: 33145408
6 H, Wang J, Wang H, Zhou et al.. Facile fabrication of noble metal nanoparticles encapsulated in hollow silica with radially oriented mesopores: multiple roles of the N-lauroylsarcosine sodium surfactant.Chemical Communications, 2011, 47(27): 7680
https://doi.org/10.1039/c1cc12823j
7 W, Zhou B, Zou W, Zhang et al.. Synthesis of stable heterogeneous catalysts by supporting carbon-stabilized palladium nanoparticles on MOFs.Nanoscale, 2015, 7(19): 8720–8724
https://doi.org/10.1039/C4NR06567K pmid: 25921773
8 Q L, Zhu Q Xu . Metal-organic framework composites.Chemical Society Reviews, 2014, 43(16): 5468–5512
https://doi.org/10.1039/C3CS60472A pmid: 24638055
9 G, Chakraborty I H, Park R, Medishetty et al.. Two-dimensional metal-organic framework materials: synthesis, structures, properties and applications.Chemical Reviews, 2021, 121(7): 3751–3891
https://doi.org/10.1021/acs.chemrev.0c01049 pmid: 33630582
10 R B, Lin S, Xiang W, Zhou et al.. Microporous metal-organic framework materials for gas separation.Chem, 2020, 6(2): 337–363
https://doi.org/10.1016/j.chempr.2019.10.012
11 J, Guo Y, Wan Y, Zhu et al.. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites.Nano Research, 2021, 14(7): 2037–2052
https://doi.org/10.1007/s12274-020-3182-1
12 S, Luo Z, Zeng G, Zeng et al.. Metal organic frameworks as robust host of palladium nanoparticles in heterogeneous catalysis: synthesis, application, and prospect.ACS Applied Materials & Interfaces, 2019, 11(36): 32579–32598
https://doi.org/10.1021/acsami.9b11990 pmid: 31429261
13 M, Duan L, Jiang G, Zeng et al.. Bimetallic nanoparticles/metal-organic frameworks: synthesis, applications and challenges.Applied Materials Today, 2020, 19: 100564
https://doi.org/10.1016/j.apmt.2020.100564
14 H, He L, Li Y, Liu et al.. Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles.Nano Research, 2021, 14(2): 444–449
https://doi.org/10.1007/s12274-020-3077-1
15 T, Guo C, Wang N, Zhang et al.. Fabrication of homogeneous non-noble metal nanoparticles within metal-organic framework nanosheets for catalytic reduction of 4-nitrophenol.Crystal Growth & Design, 2020, 20(9): 6217–6225
https://doi.org/10.1021/acs.cgd.0c01028
16 K, Kiaei M T, Nord N C, Chiu et al.. Degradation of G-type nerve agent simulant with phase-inverted spherical polymeric-MOF catalysts.ACS Applied Materials & Interfaces, 2022, 14(17): 19747–19755
https://doi.org/10.1021/acsami.2c03325 pmid: 35445601
17 P, Huang L Yan . Efficient degradation of cellulose in its homogeneously aqueous solution over 3D metal-organic framework/graphene hydrogel catalyst.Chinese Journal of Chemical Physics, 2016, 29(6): 742–748
https://doi.org/10.1063/1674-0068/29/cjcp1604073
18 N, Hammi S, Chen A, Primo et al.. Shaping MOF oxime oxidation catalysts as three-dimensional porous aerogels through structure-directing growth inside chitosan microspheres.Green Chemistry, 2022, 24(11): 4533–4543
https://doi.org/10.1039/D2GC00097K
19 P, Sutar V R, Bakuru P, Yadav et al.. Nanocomposite hydrogel of Pd@ZIF-8 and Laponite®: size-selective hydrogenation catalyst under mild conditions.Chemistry, 2021, 27(10): 3268–3272
https://doi.org/10.1002/chem.202004345 pmid: 33300628
20 L, Xia H, Huang Z, Fan et al.. Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: a cost-effective biomass material for binder-free supercapacitors.Materials & Design, 2019, 182: 108048
https://doi.org/10.1016/j.matdes.2019.108048
21 Y, Chen F, Chen S, Zhang et al.. Facile fabrication of multifunctional metal-organic framework hollow tubes to trap pollutants.Journal of the American Chemical Society, 2017, 139(46): 16482–16485
https://doi.org/10.1021/jacs.7b10265 pmid: 29083177
22 M, Sabo A, Henschel H, Fröde et al.. Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties.Journal of Materials Chemistry, 2007, 17(36): 3827
https://doi.org/10.1039/b706432b
23 P, Liu W, Chang M, Wu et al.. A highly efficient Pd/graphene oxide catalyst with abundant oxygen groups for the hydrogenation of olefins.Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(2): 409–419
https://doi.org/10.1007/s11144-015-0902-8
24 J, Liu X, Liao B Shi . Pd nanoparticles immobilized on boehmite by using tannic acid as structure-directing agent and stabilizer: a high performance catalyst for hydrogenation of olefins.Research on Chemical Intermediates, 2014, 40(1): 249–258
https://doi.org/10.1007/s11164-012-0959-1
25 X, Zhao Y, Zhao G, Fu et al.. Origin of the facet dependence in the hydrogenation catalysis of olefins: experiment and theory.Chemical Communications, 2015, 51(60): 12016–12019
https://doi.org/10.1039/C5CC03241E
[1] FMS-23636-OF-Zyh_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed