Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (1) : 50-56    https://doi.org/10.1007/s11706-011-0119-3
RESEARCH ARTICLE
Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering
Shuigen HUANG, Kim VANMEENSEL, Omer VAN DER BIEST, Jozef VLEUGELS()
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee, Belgium
 Download: PDF(483 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 composites with 40 vol.% WC were consolidated in the 1150°C–1850°C range under a pressure of 60 MPa by pulsed electric current sintering (PECS). The densification behavior, microstructure and phase constitution of the composites were investigated to clarify the role of the sintering temperature on the grain growth, mechanical properties and thermal stability of ZrO2 and WC components. Analysis results indicated that the composites sintered at 1350°C and 1450°C exhibited the highest tetragonal ZrO2 phase transformability, maximum toughness, and hardness and an optimal flexural strength. Chemical reaction of ZrO2 and C, originating from the graphite die, was detected in the composite PECS for 20 min at 1850°C in vacuum.

Keywords ceramic composite      pulsed electric current sintering (PECS)      grain size      mechanical property     
Corresponding Author(s): VLEUGELS Jozef,Email:Jozef.vleugels@mtm.kuleuven.be   
Issue Date: 05 March 2011
 Cite this article:   
Shuigen HUANG,Kim VANMEENSEL,Omer VAN DER BIEST, et al. Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering[J]. Front Mater Sci, 2011, 5(1): 50-56.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0119-3
https://academic.hep.com.cn/foms/EN/Y2011/V5/I1/50
Fig.1  Thermal and mechanical loading cycle applied during PECS at 1450°C.
Fig.2  Relative density of the ZrO and ZrO-WC composite as a function of the PECS temperature.
Fig.3  Representative densification curve for a ZrO-WC composite, PECS for 4 min at 1450°C.
Fig.4  XRD patterns of polished cross-sections of the ZrO-WC composites as a function of the PECS temperature.
Fig.5  XRD patterns of the as-sintered surfaces of ZrO-WC composites, PECS at 7 MPa for 20 min.
Fig.6  Microstructures of the ZrO-WC composites, PECS for 4 min at 1250°C, 1350°C, 1450°C, 1550°C, 1650°C, and 1850°C.
Fig.7  Vickers hardness and fracture toughness of the ZrO-WC composites as a function of the PECS temperature.
Fig.8  XRD patterns of fractured surfaces of the composites, PECS for 4 min at 1450°C and 1850°C.
1 Anné G, Put S, Vanmeensel K, . Hard, tough and strong ZrO2-WC composites from nanosized powders. Journal of the European Ceramic Society , 2005, 25(1): 55–63
doi: 10.1016/j.jeurceramsoc.2004.01.015
2 Jiang D, Van der Biest O, Vleugels J. ZrO2-WC nanocomposites with superior properties. Journal of the European Ceramic Society , 2007, 27(2–3): 1247–1251
doi: 10.1016/j.jeurceramsoc.2006.05.028
3 Huang S G, Vanmeensel K, Van der Biest O, . Development of ZrO2-WC composites by pulsed electric current sintering. Journal of the European Ceramic Society , 2007, 27(10): 3269–3275
doi: 10.1016/j.jeurceramsoc.2006.11.079
4 Basu B, Lee J H, Kim D Y. Development of WC-ZrO2 nanocomposites by spark plasma sintering. Journal of the American Ceramic Society , 2004, 87(2): 317–319
doi: 10.1111/j.1551-2916.2004.00317.x
5 Malek O J A, Lauwers B, Perez Y, . Processing of ultrafine ZrO2 toughened WC composites. Journal of the European Ceramic Society , 2009, 29(16): 3371–3378
doi: 10.1016/j.jeurceramsoc.2009.07.013
6 Vanmeensel K, Laptev A, Hennicke J, . Modelling of the temperature distribution during field assisted sintering. Acta Materialia , 2005, 53(16): 4379–4388
doi: 10.1016/j.actamat.2005.05.042
7 Vanmeensel K, Laptev A, Van der Biest O, . The influence of percolation during pulsed electric current sintering of ZrO2-TiN powder compacts with varying TiN content. Acta Materialia , 2007, 55(5): 1801–1811
doi: 10.1016/j.actamat.2006.10.042
8 Anstis G R, Chantikul P, Lawn B R, . A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. Journal of the American Ceramic Society , 1981, 64(9): 533–538
doi: 10.1111/j.1151-2916.1981.tb10320.x
9 ASTM Standard E 1876–99, Test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration. ASTM Annual Book of Standards, Philadelphia, PA , 1994
10 Lange F F. Transformation-toughened ZrO2 correlations between grain size control and composition in the system ZrO2-Y2O3. Journal of the American Ceramic Society , 1986, 69(3): 240–242
doi: 10.1111/j.1151-2916.1986.tb07416.x
11 Basu B, Vleugels J, Van der Biest O. Toughness tailoring of yttria-doped zirconia ceramics. Materials Science and Engineering A , 2004, 380(1–2): 215–221
doi: 10.1016/j.msea.2004.03.065
12 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Pressureless sintering of zirconium diboride. Journal of the American Ceramic Society , 2006, 89(2): 450–456
doi: 10.1111/j.1551-2916.2005.00739.x
13 Moska?a N, Pyda W. Thermal stability of tungsten carbide in 7mol.% calcia-zirconia solid solution matrix heat treated in argon. Journal of the European Ceramic Society , 2006, 26(16): 3845–3851
doi: 10.1016/j.jeurceramsoc.2005.12.012
14 Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society , 1984, 67: C119–C121
[1] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[2] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[3] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[4] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[5] Hui-Li DING,Tao ZHANG,Rui GAO,Xian-Ping WANG,Qian-Feng FANG,Chang-Song LIU,Jin-Ping SUO. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel[J]. Front. Mater. Sci., 2015, 9(3): 264-271.
[6] Yichi LIU,Debao LIU,Chen YOU,Minfang CHEN. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification[J]. Front. Mater. Sci., 2015, 9(3): 247-253.
[7] Rong SONG,De-Bao LIU,Yi-Chi LIU,Wen-Bo ZHENG,Yue ZHAO,Min-Fang CHEN. Effect of corrosion on mechanical behaviors of Mg--Zn--Zr alloy in simulated body fluid[J]. Front. Mater. Sci., 2014, 8(3): 264-270.
[8] N. RAGHAVENDRA, H. N. NARASIMHA MURTHY, M. KRISHNA, K. R. VISHNU MAHESH, R. SRIDHAR, S. FIRDOSH, G. ANGADI, S. C. SHARMA. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites[J]. Front Mater Sci, 2013, 7(4): 396-404.
[9] Wen-Guang GUO, Zhi-Ye QIU, Han CUI, Chang-Ming WANG, Xiao-Jun ZHANG, In-Seop LEE, Yu-Qi DONG, Fu-Zhai CUI. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics[J]. Front Mater Sci, 2013, 7(2): 190-195.
[10] Chang-An WANG, Ming-Fu WANG. Thermal shock behavior of ZrB2--SiC ceramics with different quenching media[J]. Front Mater Sci, 2013, 7(2): 184-189.
[11] Xiao-Yan ZHANG, Yu-Fei MA, Yong-Gang LI, Pin-Pin WANG, Yuan-Liang WANG, Yan-Feng LUO. Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine[J]. Front Mater Sci, 2012, 6(4): 326-337.
[12] San-bao LIN, Jian-ling SONG, Guang-chao MA, Chun-li YANG. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel[J]. Front Mater Sci Chin, 2009, 3(1): 78-83.
[13] HU Weiping, CHEN Hao, ZHONG Yunlong, SONG Jia, GOTTSTEIN Günter. Investigations on NiAl composites fabricated by matrix coated single crystalline AlO-fibers with and without hBN interlayer[J]. Front. Mater. Sci., 2008, 2(2): 182-193.
[14] DENG Xiangyun, LI Dejun, WANG Xiaohui, LI Longtu. Investigation of ferroelectric properties on nanocrystalline barium titanate ceramics[J]. Front. Mater. Sci., 2007, 1(3): 319-321.
[15] ZHU Guohui, S. V. Subramanian. Effect of Mn on strain accumulation in Nb microalloying steels[J]. Front. Mater. Sci., 2007, 1(3): 274-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed