|
|
|
Strategies to assemble therapeutic and imaging molecules into inorganic nanocarriers |
Sheikh Tanzina HAQUE1, Mark M. BANASZAK HOLL2, Ezharul Hoque CHOWDHURY1,3( ) |
1. Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia 2. Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia 3. Health and Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia |
|
|
|
|
Abstract Inorganic nanocarriers are potent candidates for delivering conventional anticancer drugs, nucleic acid-based therapeutics, and imaging agents, influencing their blood half-lives, tumor targetability, and bioactivity. In addition to the high surface area-to-volume ratio, they exhibit excellent scalability in synthesis, controllable shape and size, facile surface modification, inertness, stability, and unique optical and magnetic properties. However, only a limited number of inorganic nanocarriers have been so far approved for clinical applications due to burst drug release, poor target specificity, and toxicity. To overcome these barriers, understanding the principles involved in loading therapeutic and imaging molecules into these nanoparticles (NPs) and the strategies employed in enhancing sustainability and targetability of the resultant complexes and ensuring the release of the payloads in extracellular and intracellular compartments of the target site is of paramount importance. Therefore, we will shed light on various loading mechanisms harnessed for different inorganic NPs, particularly involving physical entrapment into porous/hollow nanostructures, ionic interactions with native and surface-modified NPs, covalent bonding to surface-functionalized nanomaterials, hydrophobic binding, affinity-based interactions, and intercalation through co-precipitation or anion exchange reaction.
|
| Keywords
inorganic nanoparticle
cancer
ionic interaction
covalent bonding
affinity interaction
intercalation
|
|
Corresponding Author(s):
Ezharul Hoque CHOWDHURY
|
|
Issue Date: 22 September 2022
|
|
| 1 |
G, Wang Y, Chen P, Wang , et al.. Preferential tumor accumulation and desirable interstitial penetration of poly(lactic-co-glycolic acid) nanoparticles with dual coating of chitosan oligosaccharide and polyethylene glycol-poly(D,L-lactic acid). Acta Biomaterialia, 2016, 29: 248– 260
https://doi.org/10.1016/j.actbio.2015.10.017
pmid: 26476340
|
| 2 |
D, Laha A, Pramanik S, Chattopadhyay , et al.. Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems. RSC Advances, 2015, 5( 83): 68169– 68178
https://doi.org/10.1039/C5RA08110F
|
| 3 |
J, Williams R, Lansdown R, Sweitzer , et al.. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. Journal of Controlled Release, 2003, 91( 1–2): 167– 172
https://doi.org/10.1016/S0168-3659(03)00241-4
pmid: 12932648
|
| 4 |
J C, Leroux E, Allémann Jaeghere F, De , et al.. Biodegradable nanoparticles — from sustained release formulations to improved site specific drug delivery. Journal of Controlled Release, 1996, 39( 2–3): 339– 350
https://doi.org/10.1016/0168-3659(95)00164-6
|
| 5 |
S, Gupta M K Gupta . Possible role of nanocarriers in drug delivery against cervical cancer. Nano Reviews & Experiments, 2017, 8( 1): 1335567
https://doi.org/10.1080/20022727.2017.1335567
pmid: 30410707
|
| 6 |
K T Nguyen . Targeted nanoparticles for cancer therapy: promises and challenge. Journal of Nanomedicine & Nanotechnology, 2011, 2( 5): 103e
https://doi.org/10.4172/2157-7439.1000103e
|
| 7 |
K Ky . Nanotechnology platforms and physiological challenges for cancer therapeutic. Nanomedicine, 2007, 3: 103– 110
|
| 8 |
P, Foroozandeh A A Aziz . Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters, 2018, 13( 1): 339
https://doi.org/10.1186/s11671-018-2728-6
pmid: 30361809
|
| 9 |
S T, Haque R A, Islam S H, Gan , et al.. Characterization and evaluation of bone-derived nanoparticles as a novel pH-responsive carrier for delivery of doxorubicin into breast cancer cells. International Journal of Molecular Sciences, 2020, 21( 18): 6721
https://doi.org/10.3390/ijms21186721
pmid: 32937817
|
| 10 |
S M, Moghimi A C, Hunter J C Murray . Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews, 2001, 53( 2): 283– 318
pmid: 11356986
|
| 11 |
H C, Huang S, Barua G, Sharma , et al.. Inorganic nanoparticles for cancer imaging and therapy. Journal of Controlled Release, 2011, 155( 3): 344– 357
https://doi.org/10.1016/j.jconrel.2011.06.004
pmid: 21723891
|
| 12 |
S T, Haque E H Chowdhury . Recent progress in delivery of therapeutic and imaging agents utilizing organic-inorganic hybrid nanoparticles. Current Drug Delivery, 2018, 15( 4): 485– 496
https://doi.org/10.2174/1567201814666171120114034
pmid: 29165073
|
| 13 |
S T, Haque M E, Karim I, Othman , et al.. Mitigating off-target distribution and enhancing cytotoxicity in breast cancer cells with alpha-ketoglutaric acid-modified Fe/Mg-CA nanoparticles. Journal of Pharmaceutical Investigation, 2022, 52( 3): 367– 386
https://doi.org/10.1007/s40005-022-00571-1
|
| 14 |
A C, Anselmo S Mitragotri . Nanoparticles in the clinic: an update. Bioengineering & Translational Medicine, 2019, 4( 3): e10143
https://doi.org/10.1002/btm2.10143
pmid: 31572799
|
| 15 |
M J, Mitchell M M, Billingsley R M, Haley , et al.. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20( 2): 101– 124
https://doi.org/10.1038/s41573-020-0090-8
pmid: 33277608
|
| 16 |
Y, Chen Z, Xue D, Zheng , et al.. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Current Gene Therapy, 2003, 3( 3): 273– 279
https://doi.org/10.2174/1566523034578339
pmid: 12762484
|
| 17 |
Z P, Xu Q H, Zeng G Q, Lu , et al.. Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 2006, 61( 3): 1027– 1040
https://doi.org/10.1016/j.ces.2005.06.019
|
| 18 |
M C Garnett . Gene-delivery systems using cationic polymers. Critical Reviews™ in Therapeutic Drug Carrier Systems, 1999, 16( 2): 147– 207
|
| 19 |
F, Wang C, Li J, Cheng , et al.. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. International Journal of Environmental Research and Public Health, 2016, 13( 12): 1182
https://doi.org/10.3390/ijerph13121182
pmid: 27898016
|
| 20 |
J V, Jokerst T, Lobovkina R N, Zare , et al.. Nanoparticle PEGylation for imaging and therapy. Nanomedicine, 2011, 6( 4): 715– 728
https://doi.org/10.2217/nnm.11.19
pmid: 21718180
|
| 21 |
J D, Byrne T, Betancourt L Brannon-Peppas . Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 2008, 60( 15): 1615– 1626
https://doi.org/10.1016/j.addr.2008.08.005
pmid: 18840489
|
| 22 |
G, Yang X, Sun J, Liu , et al.. Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Advanced Functional Materials, 2016, 26( 26): 4722– 4732
https://doi.org/10.1002/adfm.201600722
|
| 23 |
Z, Zhang J, Wang X, Nie , et al.. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. Journal of the American Chemical Society, 2014, 136( 20): 7317– 7326
https://doi.org/10.1021/ja412735p
pmid: 24773323
|
| 24 |
Y Q, Ye F L, Yang F Q, Hu , et al.. Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. International Journal of Pharmaceutics, 2008, 352( 1–2): 294– 301
https://doi.org/10.1016/j.ijpharm.2007.10.035
pmid: 18096336
|
| 25 |
Y Q, Ye F L, Yang F Q, Hu , et al.. Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. International Journal of Pharmaceutics, 2008, 352( 1–2): 294– 301
https://doi.org/10.1016/j.ijpharm.2007.10.035
pmid: 18096336
|
| 26 |
K, Maier-Hauff F, Ulrich D, Nestler , et al.. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of Neuro-Oncology, 2011, 103( 2): 317– 324
https://doi.org/10.1007/s11060-010-0389-0
pmid: 20845061
|
| 27 |
C C, Berry S, Wells S, Charles , et al.. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials, 2003, 24( 25): 4551– 4557
https://doi.org/10.1016/S0142-9612(03)00237-0
pmid: 12950997
|
| 28 |
A K, Gupta A S Curtis . Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials, 2004, 25( 15): 3029– 3040
https://doi.org/10.1016/j.biomaterials.2003.09.095
pmid: 14967536
|
| 29 |
A K, Gupta M Gupta . Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 2005, 26( 13): 1565– 1573
https://doi.org/10.1016/j.biomaterials.2004.05.022
pmid: 15522758
|
| 30 |
F Masood . Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering C, 2016, 60: 569– 578
https://doi.org/10.1016/j.msec.2015.11.067
pmid: 26706565
|
| 31 |
D C, Drummond O, Meyer K, Hong , et al.. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews, 1999, 51( 4): 691– 743
pmid: 10581328
|
| 32 |
H, Shmeeda Y, Amitay D, Tzemach , et al.. Liposome encapsulation of zoledronic acid results in major changes in tissue distribution and increase in toxicity. Journal of Controlled Release, 2013, 167( 3): 265– 275
https://doi.org/10.1016/j.jconrel.2013.02.003
pmid: 23419948
|
| 33 |
C G, Hadjipanayis R, Machaidze M, Kaluzova , et al.. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Research, 2010, 70( 15): 6303– 6312
https://doi.org/10.1158/0008-5472.CAN-10-1022
pmid: 20647323
|
| 34 |
I H, El-Sayed X, Huang M A El-Sayed . Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Letters, 2005, 5( 5): 829– 834
https://doi.org/10.1021/nl050074e
pmid: 15884879
|
| 35 |
M A, Khan D, Singh A, Ahmad , et al.. Revisiting inorganic nanoparticles as promising therapeutic agents: a paradigm shift in oncological theranostics. European Journal of Pharmaceutical Sciences, 2021, 164: 105892
https://doi.org/10.1016/j.ejps.2021.105892
pmid: 34052295
|
| 36 |
M C, Scicluna L Vella-Zarb . Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework-drug systems. ACS Applied Nano Materials, 2020, 3( 4): 3097– 3115
https://doi.org/10.1021/acsanm.9b02603
|
| 37 |
C, Bharti U, Nagaich A K, Pal , et al.. Mesoporous silica nanoparticles in target drug delivery system: a review. International Journal of Pharmaceutical Investigation, 2015, 5( 3): 124– 133
https://doi.org/10.4103/2230-973X.160844
pmid: 26258053
|
| 38 |
S W, Song K, Hidajat S Kawi . Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir, 2005, 21( 21): 9568– 9575
https://doi.org/10.1021/la051167e
pmid: 16207037
|
| 39 |
N, Varga M, Benkő D, Sebők , et al.. Mesoporous silica core–shell composite functionalized with polyelectrolytes for drug delivery. Microporous and Mesoporous Materials, 2015, 213: 134– 141
https://doi.org/10.1016/j.micromeso.2015.02.008
|
| 40 |
Y, Wang Q, Zhao N, Han , et al.. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11( 2): 313– 327
https://doi.org/10.1016/j.nano.2014.09.014
pmid: 25461284
|
| 41 |
L, Xiong X, Du B, Shi , et al.. Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3( 8): 1712– 1721
https://doi.org/10.1039/C4TB01601G
pmid: 32262444
|
| 42 |
M, Karimi P S, Zangabad A, Ghasemi, et al.. Chapter 7: Nanotoxicology and future scope for smart nanoparticles. In: M, Karimi P S, Zangabad A, Ghasemi, et al.., eds. Smart External Stimulus-Responsive Nanocarriers for Drug and Gene Delivery. Morgan & Claypool Publishers, 2015
|
| 43 |
T, Asefa Z Tao . Biocompatibility of mesoporous silica nanoparticles. Chemical Research in Toxicology, 2012, 25( 11): 2265– 2284
https://doi.org/10.1021/tx300166u
pmid: 22823891
|
| 44 |
N, Wang X, Cheng N, Li , et al.. Nanocarriers and their loading strategies. Advanced Healthcare Materials, 2019, 8( 6): 1801002
https://doi.org/10.1002/adhm.201801002
pmid: 30450761
|
| 45 |
J, Lu M, Liong J I, Zink , et al.. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 2007, 3( 8): 1341– 1346
https://doi.org/10.1002/smll.200700005
pmid: 17566138
|
| 46 |
L, Tang J Cheng . Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013, 8( 3): 290– 312
https://doi.org/10.1016/j.nantod.2013.04.007
pmid: 23997809
|
| 47 |
J J, Corbalan C, Medina A, Jacoby , et al.. Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis. International Journal of Nanomedicine, 2012, 7: 631– 639
pmid: 22334785
|
| 48 |
F, Chen H, Hong Y, Zhang , et al.. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano, 2013, 7( 10): 9027– 9039
https://doi.org/10.1021/nn403617j
pmid: 24083623
|
| 49 |
M, Karimi M, Eslami P, Sahandi-Zangabad , et al.. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8( 5): 696– 716
https://doi.org/10.1002/wnan.1389
pmid: 26762467
|
| 50 |
M, Karimi P, Sahandi-Zangabad A, Ghasemi , et al.. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Applied Materials & Interfaces, 2016, 8( 33): 21107– 21133
https://doi.org/10.1021/acsami.6b00371
pmid: 27349465
|
| 51 |
J M, Rosenholm A, Meinander E, Peuhu , et al.. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano, 2009, 3( 1): 197– 206
https://doi.org/10.1021/nn800781r
pmid: 19206267
|
| 52 |
D S, Karaman D, Desai R, Senthilkumar , et al.. Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Research Letters, 2012, 7( 1): 358
https://doi.org/10.1186/1556-276X-7-358
pmid: 22747910
|
| 53 |
T, Xia M, Kovochich M, Liong , et al.. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano, 2009, 3( 10): 3273– 3286
https://doi.org/10.1021/nn900918w
pmid: 19739605
|
| 54 |
W, Ngamcherdtrakul J, Morry S, Gu , et al.. Cationic polymer modified mesoporous silica nanoparticles for targeted siRNA delivery to HER2+ breast cancer. Advanced Functional Materials, 2015, 25( 18): 2646– 2659
https://doi.org/10.1002/adfm.201404629
pmid: 26097445
|
| 55 |
Y, Wang Y, Cui J, Huang , et al.. Redox and pH dual-responsive mesoporous silica nanoparticles for site-specific drug delivery. Applied Surface Science, 2015, 356: 1282– 1288
https://doi.org/10.1016/j.apsusc.2015.07.151
|
| 56 |
D R, Radu C Y, Lai K, Jeftinija , et al.. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. Journal of the American Chemical Society, 2004, 126( 41): 13216– 13217
https://doi.org/10.1021/ja046275m
pmid: 15479063
|
| 57 |
M, Kar N, Tiwari M, Tiwari , et al.. Poly-L-arginine grafted silica mesoporous nanoparticles for enhanced cellular uptake and their application in DNA delivery and controlled drug release. Particle & Particle Systems Characterization, 2013, 30( 2): 166– 179
https://doi.org/10.1002/ppsc.201200089
|
| 58 |
Z, Zou D, He X, He , et al.. Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery. Langmuir, 2013, 29( 41): 12804– 12810
https://doi.org/10.1021/la4022646
pmid: 24073830
|
| 59 |
I Y, Park I Y, Kim M K, Yoo , et al.. Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. International Journal of Pharmaceutics, 2008, 359( 1–2): 280– 287
https://doi.org/10.1016/j.ijpharm.2008.04.010
pmid: 18490119
|
| 60 |
H, Meng W X, Mai H, Zhang , et al.. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7( 2): 994– 1005
https://doi.org/10.1021/nn3044066
pmid: 23289892
|
| 61 |
M, Jang Y I, Yoon Y S, Kwon , et al.. Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer. Korean Journal of Radiology, 2014, 15( 4): 411– 422
https://doi.org/10.3348/kjr.2014.15.4.411
pmid: 25053899
|
| 62 |
Q, Sun Q, You J, Wang , et al.. Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Applied Materials & Interfaces, 2018, 10( 2): 1963– 1975
https://doi.org/10.1021/acsami.7b13651
pmid: 29276824
|
| 63 |
W, Wei G H, Ma G, Hu , et al.. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. Journal of the American Chemical Society, 2008, 130( 47): 15808– 15810
https://doi.org/10.1021/ja8039585
pmid: 18980322
|
| 64 |
Y, Ueno H, Futagawa Y, Takagi , et al.. Drug-incorporating calcium carbonate nanoparticles for a new delivery system. Journal of Controlled Release, 2005, 103( 1): 93– 98
https://doi.org/10.1016/j.jconrel.2004.11.015
pmid: 15710503
|
| 65 |
S, Chen D, Zhao F, Li , et al.. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Advances, 2012, 2( 5): 1820– 1826
https://doi.org/10.1039/c1ra00527h
|
| 66 |
J, Wang J S, Chen J Y, Zong , et al.. Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. The Journal of Physical Chemistry C, 2010, 114( 44): 18940– 18945
https://doi.org/10.1021/jp105906p
|
| 67 |
M, Kester Y, Heakal T, Fox , et al.. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Letters, 2008, 8( 12): 4116– 4121
https://doi.org/10.1021/nl802098g
pmid: 19367878
|
| 68 |
K H, Bae K, Lee C, Kim , et al.. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials, 2011, 32( 1): 176– 184
https://doi.org/10.1016/j.biomaterials.2010.09.039
pmid: 20934746
|
| 69 |
J, Shi Z, Chen L, Wang , et al.. A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomaterialia, 2016, 29: 282– 297
https://doi.org/10.1016/j.actbio.2015.10.027
pmid: 26485168
|
| 70 |
S, Chen X, Zhao J, Chen , et al.. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjugate Chemistry, 2010, 21( 5): 979– 987
https://doi.org/10.1021/bc9005656
pmid: 20429547
|
| 71 |
W M, Pardridge R J Boado . Enhanced cellular uptake of biotinylated antisense oligonucleotide or peptide mediated by avidin, a cationic protein. FEBS Letters, 1991, 288( 1–2): 30– 32
https://doi.org/10.1016/0014-5793(91)80996-G
pmid: 1879560
|
| 72 |
X, Zeng Y X, Sun X Z, Zhang , et al.. Biotinylated disulfide containing PEI/avidin bioconjugate shows specific enhanced transfection efficiency in HepG2 cells. Organic & Biomolecular Chemistry, 2009, 7( 20): 4201– 4210
https://doi.org/10.1039/b910831a
pmid: 19795058
|
| 73 |
U, Wojda P, Goldsmith J L Miller . Surface membrane biotinylation efficiently mediates the endocytosis of avidin bioconjugates into nucleated cells. Bioconjugate Chemistry, 1999, 10( 6): 1044– 1050
https://doi.org/10.1021/bc990059z
pmid: 10563774
|
| 74 |
S F Rosebrough . Pharmacokinetics and biodistribution of radiolabeled avidin, streptavidin and biotin. Nuclear Medicine and Biology, 1993, 20( 5): 663– 668
https://doi.org/10.1016/0969-8051(93)90037-U
pmid: 8358353
|
| 75 |
B, Schechter R, Silberman R, Arnon , et al.. Tissue distribution of avidin and streptavidin injected to mice ― effect of avidin carbohydrate, streptavidin truncation and exogenous biotin. European Journal of Biochemistry, 1990, 189( 2): 327– 331
https://doi.org/10.1111/j.1432-1033.1990.tb15493.x
pmid: 2186907
|
| 76 |
Z, Yao M, Zhang H, Sakahara , et al.. Avidin targeting of intraperitoneal tumor xenografts. Journal of the National Cancer Institute, 1998, 90( 1): 25– 29
https://doi.org/10.1093/jnci/90.1.25
pmid: 9428779
|
| 77 |
M, González C E, Argaraña G D Fidelio . Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomolecular Engineering, 1999, 16( 1–4): 67– 72
https://doi.org/10.1016/S1050-3862(99)00041-8
pmid: 10796986
|
| 78 |
G Elia . Biotinylation reagents for the study of cell surface proteins. Proteomics, 2008, 8( 19): 4012– 4024
https://doi.org/10.1002/pmic.200800097
pmid: 18763706
|
| 79 |
A, Jain K Cheng . The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release, 2017, 245: 27– 40
https://doi.org/10.1016/j.jconrel.2016.11.016
pmid: 27865853
|
| 80 |
K, Hoya L R, Guterman L, Miskolczi , et al.. A novel intravascular drug delivery method using endothelial biotinylation and avidin-biotin binding. Drug Delivery, 2001, 8( 4): 215– 222
https://doi.org/10.1080/107175401317245895
pmid: 11757779
|
| 81 |
N P, Singh E S, Yolcu N, Askenasy , et al.. ProtEx: a novel technology to display exogenous proteins on the cell surface for immunomodulation. Annals of the New York Academy of Sciences, 2005, 1056( 1): 344– 358
https://doi.org/10.1196/annals.1352.036
pmid: 16387700
|
| 82 |
T T, Nguyen K L, Sly J C Conboy . Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation. Analytical Chemistry, 2012, 84( 1): 201– 208
https://doi.org/10.1021/ac202375n
pmid: 22122646
|
| 83 |
D, Artemov N, Mori B, Okollie , et al.. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnetic Resonance in Medicine, 2003, 49( 3): 403– 408
https://doi.org/10.1002/mrm.10406
pmid: 12594741
|
| 84 |
C, Yan Y, Wu J, Feng , et al.. Anti-αvβ3 antibody guided three-step pretargeting approach using magnetoliposomes for molecular magnetic resonance imaging of breast cancer angiogenesis. International Journal of Nanomedicine, 2013, 8: 245– 255
pmid: 23345972
|
| 85 |
A, Barve A, Jain H, Liu , et al.. An enzyme-responsive conjugate improves the delivery of a PI3K inhibitor to prostate cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12( 8): 2373– 2381
https://doi.org/10.1016/j.nano.2016.07.007
pmid: 27478108
|
| 86 |
J M, Steinbach Y E, Seo W M Saltzman . Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization. Acta Biomaterialia, 2016, 30: 49– 61
https://doi.org/10.1016/j.actbio.2015.11.029
pmid: 26602822
|
| 87 |
Rijt S H, van D A, Bölükbas C, Argyo , et al.. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano, 2015, 9( 3): 2377– 2389
https://doi.org/10.1021/nn5070343
pmid: 25703655
|
| 88 |
V, Oliveri R, D’Agata V, Giglio , et al.. Cyclodextrin-functionalised gold nanoparticles via streptavidin: a supramolecular approach. Supramolecular Chemistry, 2013, 25( 8): 465– 473
https://doi.org/10.1080/10610278.2013.794278
|
| 89 |
B M, Barth R, Sharma E I, Altinoğlu , et al.. Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. ACS Nano, 2010, 4( 3): 1279– 1287
https://doi.org/10.1021/nn901297q
pmid: 20180585
|
| 90 |
F S, Mozar E H Chowdhury . Surface-modification of carbonate apatite nanoparticles enhances delivery and cytotoxicity of gemcitabine and anastrozole in breast cancer cells. Pharmaceutics, 2017, 9( 2): 21
https://doi.org/10.3390/pharmaceutics9020021
pmid: 28590445
|
| 91 |
P, Bajaj C, Mikoryak R, Wang , et al.. A carbon nanotube-based Raman-imaging immunoassay for evaluating tumor targeting ligands. Analyst, 2014, 139( 12): 3069– 3076
https://doi.org/10.1039/C4AN00258J
pmid: 24776815
|
| 92 |
G, Lai J, Wu H, Ju , et al.. Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Advanced Functional Materials, 2011, 21( 15): 2938– 2943
https://doi.org/10.1002/adfm.201100396
|
| 93 |
K K, Cotí M E, Belowich M, Liong , et al.. Mechanised nanoparticles for drug delivery. Nanoscale, 2009, 1( 1): 16– 39
https://doi.org/10.1039/b9nr00162j
pmid: 20644858
|
| 94 |
K, Ladewig Z P, Xu G Q Lu . Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opinion on Drug Delivery, 2009, 6( 9): 907– 922
https://doi.org/10.1517/17425240903130585
pmid: 19686052
|
| 95 |
S J, Choi J H Choy . Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine, 2011, 6( 5): 803– 814
https://doi.org/10.2217/nnm.11.86
pmid: 21793673
|
| 96 |
S J, Choi J M, Oh J H Choy . Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. Journal of Nanoscience and Nanotechnology, 2010, 10( 4): 2913– 2916
https://doi.org/10.1166/jnn.2010.1415
pmid: 20355523
|
| 97 |
J H, Choy J S, Jung J M, Oh , et al.. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials, 2004, 25( 15): 3059– 3064
https://doi.org/10.1016/j.biomaterials.2003.09.083
pmid: 14967539
|
| 98 |
J M, Oh S J, Choi G E, Lee , et al.. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chemistry: An Asian Journal, 2009, 4( 1): 67– 73
https://doi.org/10.1002/asia.200800290
pmid: 18988236
|
| 99 |
A, Nel T, Xia L, Mädler , et al.. Toxic potential of materials at the nanolevel. Science, 2006, 311( 5761): 622– 627
https://doi.org/10.1126/science.1114397
pmid: 16456071
|
| 100 |
S J, Choi J M, Oh J H Choy . Safety aspect of inorganic layered nanoparticles: size-dependency in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 2008, 8( 10): 5297– 5301
https://doi.org/10.1166/jnn.2008.1143
pmid: 19198442
|
| 101 |
J M, Oh T T, Biswick J H Choy . Layered nanomaterials for green materials. Journal of Materials Chemistry, 2009, 19( 17): 2553– 2563
https://doi.org/10.1039/b819094a
|
| 102 |
J, Panyam V Labhasetwar . Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 2003, 55( 3): 329– 347
https://doi.org/10.1016/S0169-409X(02)00228-4
pmid: 12628320
|
| 103 |
J M, Oh S J, Choi S T, Kim , et al.. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjugate Chemistry, 2006, 17( 6): 1411– 1417
https://doi.org/10.1021/bc0601323
pmid: 17105218
|
| 104 |
J M, Oh M, Park S T, Kim , et al.. Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system. Journal of Physics and Chemistry of Solids, 2006, 67( 5–6): 1024– 1027
https://doi.org/10.1016/j.jpcs.2006.01.033
|
| 105 |
S J, Choi J M, Oh H E, Chung , et al.. In vivo anticancer activity of methotrexate-loaded layered double hydroxide nanoparticles. Current Pharmaceutical Design, 2013, 19( 41): 7196– 7202
https://doi.org/10.2174/138161281941131219123718
pmid: 23489199
|
| 106 |
A, Javaid M, Bone C Stanley . Effect of fenbufen on the quality of life of patients with pain from squamous-cell carcinoma of the bronchus. In: Proceedings of the Thorax, 1988, 244
|
| 107 |
B, Li J, He D G, Evans , et al.. Inorganic layered double hydroxides as a drug delivery system — intercalation and in vitro release of fenbufen. Applied Clay Science, 2004, 27( 3–4): 199– 207
https://doi.org/10.1016/j.clay.2004.07.002
|
| 108 |
V, Ambrogi G, Fardella G, Grandolini , et al.. Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents ― I. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics, 2001, ( 1–2): 23– 32
https://doi.org/10.1016/S0378-5173(01)00629-9
pmid: 11376964
|
| 109 |
N T, Whilton P J, Vickers S Mann . Bioinorganic clays: synthesis and characterization of amino-andpolyamino acid intercalated layered double hydroxides. Journal of Materials Chemistry, 1997, 7( 8): 1623– 1629
https://doi.org/10.1039/a701237c
|
| 110 |
Y H, Xue R, Zhang X Y, Sun , et al.. The construction and characterization of layered double hydroxides as delivery vehicles for podophyllotoxins. Journal of Materials Science: Materials in Medicine, 2008, 19( 3): 1197– 1202
https://doi.org/10.1007/s10856-007-3221-4
pmid: 17701296
|
| 111 |
D H, Park J, Cho O J, Kwon , et al.. Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation. Angewandte Chemie International Edition in English, 2016, 55( 14): 4582– 4586
https://doi.org/10.1002/anie.201510844
pmid: 26879376
|
| 112 |
L, Li Y, Qian L, Sun , et al.. Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34: 102369
https://doi.org/10.1016/j.nano.2021.102369
pmid: 33636347
|
| 113 |
G, Choi I R, Jeon H, Piao , et al.. Highly condensed boron cage cluster anions in 2d carrier and its enhanced antitumor efficiency for boron neutron capture therapy. Advanced Functional Materials, 2018, 28( 27): 1704470
https://doi.org/10.1002/adfm.201704470
|
| 114 |
Z, Guo W, Xie J, Lu , et al.. Ferrous ions doped layered double hydroxide: smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomaterials Science, 2021, 9( 17): 5928– 5938
https://doi.org/10.1039/D1BM00765C
pmid: 34308465
|
| 115 |
T, Xu J, Liu L, Sun , et al.. Enhancing tumor accumulation and cellular uptake of layered double hydroxide nanoparticles by coating/detaching pH-triggered charge-convertible polymers. ACS Omega, 2021, 6( 5): 3822– 3830
https://doi.org/10.1021/acsomega.0c05520
pmid: 33585761
|
| 116 |
M, Baek I S, Kim J, Yu , et al.. Effect of different forms of anionic nanoclays on cytotoxicity. Journal of Nanoscience and Nanotechnology, 2011, 11( 2): 1803– 1806
https://doi.org/10.1166/jnn.2011.3408
pmid: 21456296
|
| 117 |
Z P, Xu M, Niebert K, Porazik , et al.. Subcellular compartment targeting of layered double hydroxide nanoparticles. Journal of Controlled Release, 2008, 130( 1): 86– 94
https://doi.org/10.1016/j.jconrel.2008.05.021
pmid: 18614254
|
| 118 |
R, Hong G, Han J M, Fernández , et al.. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. Journal of the American Chemical Society, 2006, 128( 4): 1078– 1079
https://doi.org/10.1021/ja056726i
pmid: 16433515
|
| 119 |
T R, Fadel T M Fahmy . Immunotherapy applications of carbon nanotubes: from design to safe applications. Trends in Biotechnology, 2014, 32( 4): 198– 209
https://doi.org/10.1016/j.tibtech.2014.02.005
pmid: 24630474
|
| 120 |
C H, Villa T, Dao I, Ahearn , et al.. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano, 2011, 5( 7): 5300– 5311
https://doi.org/10.1021/nn200182x
pmid: 21682329
|
| 121 |
C A, Dyke M P, Stewart J M Tour . Separation of single-walled carbon nanotubes on silica gel. Materials morphology and Raman excitation wavelength affect data interpretation. Journal of the American Chemical Society, 2005, 127( 12): 4497– 4509
https://doi.org/10.1021/ja042828h
pmid: 15783233
|
| 122 |
K M, Lee L, Li L Dai . Asymmetric end-functionalization of multi-walled carbon nanotubes. Journal of the American Chemical Society, 2005, 127( 12): 4122– 4123
https://doi.org/10.1021/ja0423670
pmid: 15783165
|
| 123 |
Z, Liu K, Chen C, Davis , et al.. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research, 2008, 68( 16): 6652– 6660
https://doi.org/10.1158/0008-5472.CAN-08-1468
pmid: 18701489
|
| 124 |
Z, Sobhani M A, Behnam F, Emami , et al.. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes. International Journal of Nanomedicine, 2017, 12: 4509– 4517
https://doi.org/10.2147/IJN.S134661
pmid: 28684911
|
| 125 |
C, Sacchetti N, Rapini A, Magrini , et al.. In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes. Bioconjugate Chemistry, 2013, 24( 6): 852– 858
https://doi.org/10.1021/bc400070q
pmid: 23682992
|
| 126 |
J S, Lee J J, Green K T, Love , et al.. Gold, poly(β-amino ester) nanoparticles for small interfering RNA delivery. Nano Letters, 2009, 9( 6): 2402– 2406
https://doi.org/10.1021/nl9009793
pmid: 19422265
|
| 127 |
L, Li M, Nurunnabi M, Nafiujjaman , et al.. A photosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2( 19): 2929– 2937
https://doi.org/10.1039/c4tb00181h
pmid: 32261487
|
| 128 |
Y, Cheng T L, Doane C H, Chuang , et al.. Near infrared light-triggered drug generation and release from gold nanoparticle carriers for photodynamic therapy. Small, 2014, 10( 9): 1799– 1804
https://doi.org/10.1002/smll.201303329
pmid: 24515950
|
| 129 |
M D, Massich D A, Giljohann A L, Schmucker , et al.. Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates. ACS Nano, 2010, 4( 10): 5641– 5646
https://doi.org/10.1021/nn102228s
pmid: 20860397
|
| 130 |
R, Huschka J, Zuloaga M W, Knight , et al.. Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. Journal of the American Chemical Society, 2011, 133( 31): 12247– 12255
https://doi.org/10.1021/ja204578e
pmid: 21736347
|
| 131 |
C C, Chen Y P, Lin C W, Wang , et al.. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. Journal of the American Chemical Society, 2006, 128( 11): 3709– 3715
https://doi.org/10.1021/ja0570180
pmid: 16536544
|
| 132 |
S, Dhar F X, Gu R, Langer , et al.. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105( 45): 17356– 17361
https://doi.org/10.1073/pnas.0809154105
pmid: 18978032
|
| 133 |
S, Dhar Z, Liu J, Thomale , et al.. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. Journal of the American Chemical Society, 2008, 130( 34): 11467– 11476
https://doi.org/10.1021/ja803036e
pmid: 18661990
|
| 134 |
S, Dhar W L, Daniel D A, Giljohann , et al.. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. Journal of the American Chemical Society, 2009, 131( 41): 14652– 14653
https://doi.org/10.1021/ja9071282
pmid: 19778015
|
| 135 |
Y, Min C, Mao D, Xu , et al.. Gold nanorods for platinum based prodrug delivery. Chemical Communications, 2010, 46( 44): 8424– 8426
https://doi.org/10.1039/c0cc03108a
pmid: 20936244
|
| 136 |
W, Ding L Guo . Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. International Journal of Nanomedicine, 2013, 8: 4631– 4639
pmid: 24348038
|
| 137 |
M, Kresse S, Wagner D, Pfefferer , et al.. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magnetic Resonance in Medicine, 1998, 40( 2): 236– 242
https://doi.org/10.1002/mrm.1910400209
pmid: 9702705
|
| 138 |
M K, Yu Y Y, Jeong J, Park , et al.. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie International Edition in English, 2008, 47( 29): 5362– 5365
https://doi.org/10.1002/anie.200800857
pmid: 18551493
|
| 139 |
A, Som R, Raliya L, Tian , et al.. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale, 2016, 8( 25): 12639– 12647
https://doi.org/10.1039/C5NR06162H
pmid: 26745389
|
| 140 |
A S, Kamba M, Ismail T A T, Ibrahim , et al.. A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system. BioMed Research International, 2013, 2013: 587451
https://doi.org/10.1155/2013/587451
|
| 141 |
N I, Hammadi Y, Abba M N M, Hezmee , et al.. Formulation of a sustained release docetaxel loaded cockle shell-derived calcium carbonate nanoparticles against breast cancer. Pharmaceutical Research, 2017, 34( 6): 1193– 1203
https://doi.org/10.1007/s11095-017-2135-1
pmid: 28382563
|
| 142 |
H, Peng K, Li T, Wang , et al.. Preparation of hierarchical mesoporous CaCO3 by a facile binary solvent approach as anticancer drug carrier for etoposide. Nanoscale Research Letters, 2013, 8( 1): 321
https://doi.org/10.1186/1556-276X-8-321
pmid: 23849350
|
| 143 |
J, Li Y, Yang L Huang . Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. Journal of Controlled Release, 2012, 158( 1): 108– 114
https://doi.org/10.1016/j.jconrel.2011.10.020
pmid: 22056915
|
| 144 |
Z, Wu J, Chen Y, Sun , et al.. Tumor microenvironment-response calcium phosphate hybrid nanoparticles enhanced siRNAs targeting tumors in vivo. Journal of Biomedical Nanotechnology, 2018, 14( 10): 1816– 1825
https://doi.org/10.1166/jbn.2018.2606
pmid: 30041727
|
| 145 |
Y, Dong H, Liao H, Fu , et al.. pH-sensitive shell–core platform block DNA repair pathway to amplify irreversible DNA damage of triple negative breast cancer. ACS Applied Materials & Interfaces, 2019, 11( 42): 38417– 38428
https://doi.org/10.1021/acsami.9b12140
pmid: 31556584
|
| 146 |
C, Qiu W, Wei J, Sun , et al.. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy. Nanoscale, 2016, 8( 26): 13033– 13044
https://doi.org/10.1039/C6NR04034A
pmid: 27314204
|
| 147 |
S T, Haque M E, Karim S A Z, Abidin , et al.. Fe/Mg-modified carbonate apatite with uniform particle size and unique transport protein-related protein corona efficiently delivers doxorubicin into breast cancer cells. Nanomaterials, 2020, 10( 5): 834
https://doi.org/10.3390/nano10050834
pmid: 32349272
|
| 148 |
S M, Hossain Abidin S A, Zainal E H Chowdhury . Krebs cycle intermediate-modified carbonate apatite nanoparticles drastically reduce mouse tumor burden and toxicity by restricting broad tissue distribution of anticancer drugs. Cancers, 2020, 12( 1): 161
https://doi.org/10.3390/cancers12010161
pmid: 31936503
|
| 149 |
F S, Mozar E H Chowdhury . PEGylation of carbonate apatite nanoparticles prevents opsonin binding and enhances tumor accumulation of gemcitabine. Journal of Pharmaceutical Sciences, 2018, 107( 9): 2497– 2508
https://doi.org/10.1016/j.xphs.2018.05.020
pmid: 29883662
|
| 150 |
S M, Hossain J, Shetty K K, Tha , et al.. α-Ketoglutaric acid-modified carbonate apatite enhances cellular uptake and cytotoxicity of a Raf-kinase inhibitor in breast cancer cells through inhibition of MAPK and PI-3 kinase pathways. Biomedicines, 2019, 7( 1): 4
https://doi.org/10.3390/biomedicines7010004
pmid: 30609867
|
| 151 |
S M, Hossain E H Chowdhury . Citrate- and succinate-modified carbonate apatite nanoparticles with loaded doxorubicin exhibit potent anticancer activity against breast cancer cells. Pharmaceutics, 2018, 10( 1): 32
https://doi.org/10.3390/pharmaceutics10010032
pmid: 29534497
|
| 152 |
G, Verma K, Barick N G, Shetake , et al.. Citrate-functionalized hydroxyapatite nanoparticles for pH-responsive drug delivery. RSC Advances, 2016, 6( 81): 77968– 77976
https://doi.org/10.1039/C6RA10659E
|
| 153 |
I, Rodríguez-Ruiz J M, Delgado-López M A, Durán-Olivencia , et al.. pH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content. Langmuir, 2013, 29( 26): 8213– 8221
https://doi.org/10.1021/la4008334
pmid: 23735159
|
| 154 |
E Bilensoy . Cationic nanoparticles for cancer therapy. Expert Opinion on Drug Delivery, 2010, 7( 7): 795– 809
https://doi.org/10.1517/17425247.2010.485983
pmid: 20446858
|
| 155 |
A, Slita A, Egorova E, Casals , et al.. Characterization of modified mesoporous silica nanoparticles as vectors for siRNA delivery. Asian Journal of Pharmaceutical Sciences, 2018, 13( 6): 592– 599
https://doi.org/10.1016/j.ajps.2018.01.006
|
| 156 |
A, Zakeri M A J, Kouhbanani N, Beheshtkhoo , et al.. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Reviews & Experiments, 2018, 9( 1): 1488497
https://doi.org/10.1080/20022727.2018.1488497
pmid: 30410712
|
| 157 |
S, Vaidyanathan J, Chen B G, Orr , et al.. Cationic polymer intercalation into the lipid membrane enables intact polyplex DNA escape from endosomes for gene delivery. Molecular Pharmaceutics, 2016, 13( 6): 1967– 1978
https://doi.org/10.1021/acs.molpharmaceut.6b00139
pmid: 27111496
|
| 158 |
R V, Benjaminsen M A, Mattebjerg J R, Henriksen , et al.. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Molecular Therapy, 2013, 21( 1): 149– 157
https://doi.org/10.1038/mt.2012.185
pmid: 23032976
|
| 159 |
X, Wang D, Niu C, Hu , et al.. Polyethyleneimine-based nanocarriers for gene delivery. Current Pharmaceutical Design, 2015, 21( 42): 6140– 6156
https://doi.org/10.2174/1381612821666151027152907
pmid: 26503146
|
| 160 |
T, Zhang X, Xue D, He , et al.. A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Letters, 2015, 365( 2): 156– 165
https://doi.org/10.1016/j.canlet.2015.05.003
pmid: 26054847
|
| 161 |
X, Li Y, Chen M, Wang , et al.. A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials, 2013, 34( 4): 1391– 1401
https://doi.org/10.1016/j.biomaterials.2012.10.072
pmid: 23164421
|
| 162 |
J, Shen H C, Kim H, Su , et al.. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics, 2014, 4( 5): 487– 497
https://doi.org/10.7150/thno.8263
pmid: 24672582
|
| 163 |
R, Tutuianu L M, Popescu M B, Preda , et al.. Evaluation of the ability of nanostructured PEI-coated iron oxide nanoparticles to incorporate cisplatin during synthesis. Nanomaterials, 2017, 7( 10): 314
https://doi.org/10.3390/nano7100314
pmid: 29023373
|
| 164 |
G, Liu J, Xie F, Zhang , et al.. N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small, 2011, 7( 19): 2742– 2749
https://doi.org/10.1002/smll.201100825
pmid: 21861295
|
| 165 |
L, Zhang T, Wang L, Li , et al.. Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4–mesoporous silica yolk–shell nanocapsules for siRNA delivery. Chemical Communications, 2012, 48( 69): 8706– 8708
https://doi.org/10.1039/c2cc33472k
pmid: 22824833
|
| 166 |
K S, Siu D, Chen X, Zheng , et al.. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 2014, 35( 10): 3435– 3442
https://doi.org/10.1016/j.biomaterials.2013.12.079
pmid: 24424208
|
| 167 |
H, Wu H, Shi H, Zhang , et al.. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014, 35( 20): 5369– 5380
https://doi.org/10.1016/j.biomaterials.2014.03.038
pmid: 24709520
|
| 168 |
Y, Lee S H, Lee J S, Kim , et al.. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. Journal of Controlled Release, 2011, 155( 1): 3– 10
https://doi.org/10.1016/j.jconrel.2010.09.009
pmid: 20869409
|
| 169 |
V, Cebrián F, Martín-Saavedra C, Yagüe , et al.. Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 2011, 7( 10): 3645– 3655
https://doi.org/10.1016/j.actbio.2011.06.018
pmid: 21704738
|
| 170 |
L, Zhang Z, Lu Q, Zhao , et al.. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011, 7( 4): 460– 464
https://doi.org/10.1002/smll.201001522
pmid: 21360803
|
| 171 |
J, Sheng L, Han J, Qin , et al.. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Applied Materials & Interfaces, 2015, 7( 28): 15430– 15441
https://doi.org/10.1021/acsami.5b03555
pmid: 26111015
|
| 172 |
S, Şenel S J McClure . Potential applications of chitosan in veterinary medicine. Advanced Drug Delivery Reviews, 2004, 56( 10): 1467– 1480
https://doi.org/10.1016/j.addr.2004.02.007
pmid: 15191793
|
| 173 |
T, Kean M Thanou . Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews, 2010, 62( 1): 3– 11
https://doi.org/10.1016/j.addr.2009.09.004
pmid: 19800377
|
| 174 |
J, Lin Y, Li Y, Li , et al.. Drug/dye-loaded, multifunctional PEG–chitosan–iron oxide nanocomposites for methotraxate synergistically self-targeted cancer therapy and dual model imaging. ACS Applied Materials & Interfaces, 2015, 7( 22): 11908– 11920
https://doi.org/10.1021/acsami.5b01685
pmid: 25978458
|
| 175 |
S, Mao W, Sun T Kissel . Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 2010, 62( 1): 12– 27
https://doi.org/10.1016/j.addr.2009.08.004
pmid: 19796660
|
| 176 |
M K, Gurka D, Pender P, Chuong , et al.. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. Journal of Controlled Release, 2016, 231: 60– 67
https://doi.org/10.1016/j.jconrel.2015.12.055
pmid: 26763377
|
| 177 |
C, Murugan K, Rayappan R, Thangam , et al.. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Scientific Reports, 2016, 6: 34053
https://doi.org/10.1038/srep34053
|
| 178 |
T, Liao C, Liu J, Ren , et al.. A chitosan/mesoporous silica nanoparticle-based anticancer drug delivery system with a “tumor-triggered targeting” property. International Journal of Biological Macromolecules, 2021, 183: 2017– 2029
https://doi.org/10.1016/j.ijbiomac.2021.06.004
pmid: 34097958
|
| 179 |
Q, Yan X, Chen H, Gong , et al.. Delivery of a TNF-α-derived peptide by nanoparticles enhances its antitumor activity by inducing cell-cycle arrest and caspase-dependent apoptosis. FASEB Journal, 2018, 32( 12): 6948– 6964
https://doi.org/10.1096/fj.201800377R
pmid: 30161002
|
| 180 |
A, Jayasree S, Sasidharan M, Koyakutty , et al.. Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging. Carbohydrate Polymers, 2011, 85( 1): 37– 43
https://doi.org/10.1016/j.carbpol.2011.01.034
|
| 181 |
P, Manivasagan V T, Nguyen S W, Jun , et al.. Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy. Journal of Controlled Release, 2019, 311–312: 26– 42
https://doi.org/10.1016/j.jconrel.2019.08.007
pmid: 31401198
|
| 182 |
P, Li Y, Yan H, Zhang , et al.. Treatment of cervical cancer by siRNA-loaded chitosan-coated calcium phosphate nanoparticles. Journal of Chinese Pharmaceutical Sciences, 2018, 27( 8): 517– 529
https://doi.org/10.5246/jcps.2018.08.053
|
| 183 |
K, Roy R K, Kanwar J R Kanwar . LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials, 2015, 71: 84– 99
https://doi.org/10.1016/j.biomaterials.2015.07.055
pmid: 26318819
|
| 184 |
C, Lonez M, Vandenbranden J M Ruysschaert . Cationic liposomal lipids: from gene carriers to cell signaling. Progress in Lipid Research, 2008, 47( 5): 340– 347
https://doi.org/10.1016/j.plipres.2008.03.002
pmid: 18424270
|
| 185 |
N J Caplen . Nucleic acid transfer using cationic lipids. Methods in Molecular Biology, 2000, 133: 1– 19
https://doi.org/10.1385/1-59259-215-5:1
|
| 186 |
N, Zhu D, Liggitt Y, Liu , et al.. Systemic gene expression after intravenous DNA delivery into adult mice. Science, 1993, 261( 5118): 209– 211
https://doi.org/10.1126/science.7687073
pmid: 7687073
|
| 187 |
L H, Lindner R, Brock D, Arndt-Jovin , et al.. Structural variation of cationic lipids: minimum requirement for improved oligonucleotide delivery into cells. Journal of Controlled Release, 2006, 110( 2): 444– 456
https://doi.org/10.1016/j.jconrel.2005.10.009
pmid: 16297484
|
| 188 |
G, Pillai A, Cox L Yuen . The science and technology of cancer theranostic nanomedicines: a primer for clinicians and pharmacists. SOJ Pharmacy and Pharmaceutical Sciences, 2018, 5( 2): 1– 7
https://doi.org/10.15226/2374-6866/5/2/00178
|
| 189 |
S R, Mudshinge A B, Deore S, Patil , et al.. Nanoparticles: emerging carriers for drug delivery. Saudi Pharmaceutical Journal, 2011, 19( 3): 129– 141
https://doi.org/10.1016/j.jsps.2011.04.001
pmid: 23960751
|
| 190 |
W T, Al-Jamal K T, Al-Jamal B, Tian , et al.. Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano, 2008, 2( 3): 408– 418
https://doi.org/10.1021/nn700176a
pmid: 19206564
|
| 191 |
S J, Leung M Romanowski . Light-activated content release from liposomes. Theranostics, 2012, 2( 10): 1020– 1036
https://doi.org/10.7150/thno.4847
pmid: 23139729
|
| 192 |
V P Torchilin . Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discovery, 2005, 4( 2): 145– 160
https://doi.org/10.1038/nrd1632
pmid: 15688077
|
| 193 |
Y, Nie L, Ji H, Ding , et al.. Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterization. Theranostics, 2012, 2( 11): 1092– 1103
https://doi.org/10.7150/thno.4949
pmid: 23227125
|
| 194 |
D R, Sørensen M, Leirdal M Sioud . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Journal of Molecular Biology, 2003, 327( 4): 761– 766
https://doi.org/10.1016/S0022-2836(03)00181-5
pmid: 12654261
|
| 195 |
S, Zhang B, Zhao H, Jiang , et al.. Cationic lipids and polymers mediated vectors for delivery of siRNA. Journal of Controlled Release, 2007, 123( 1): 1– 10
https://doi.org/10.1016/j.jconrel.2007.07.016
pmid: 17716771
|
| 196 |
W, Tao X, Mao J P, Davide , et al.. Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Molecular Therapy, 2011, 19( 3): 567– 575
https://doi.org/10.1038/mt.2010.282
pmid: 21179008
|
| 197 |
Y, Yang J, Li F, Liu , et al.. Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Molecular Therapy, 2012, 20( 3): 609– 615
https://doi.org/10.1038/mt.2011.270
pmid: 22186791
|
| 198 |
N, Reinhardt L, Adumeau O, Lambert , et al.. Quaternary ammonium groups exposed at the surface of silica nanoparticles suitable for DNA complexation in the presence of cationic lipids. The Journal of Physical Chemistry B, 2015, 119( 21): 6401– 6411
https://doi.org/10.1021/acs.jpcb.5b01834
pmid: 25950202
|
| 199 |
W T, Al-Jamal K T, Al-Jamal A, Cakebread , et al.. Blood circulation and tissue biodistribution of lipid-quantum dot (L-QD) hybrid vesicles intravenously administered in mice. Bioconjugate Chemistry, 2009, 20( 9): 1696– 1702
https://doi.org/10.1021/bc900047n
pmid: 19655725
|
| 200 |
W T, Al-Jamal K T, Al-Jamal B, Tian , et al.. Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano, 2008, 2( 3): 408– 418
https://doi.org/10.1021/nn700176a
pmid: 19206564
|
| 201 |
W T, Al-Jamal K T, Al-Jamal P H, Bomans , et al.. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small, 2008, 4( 9): 1406– 1415
https://doi.org/10.1002/smll.200701043
pmid: 18711753
|
| 202 |
F, Wang Z, Chen L Zhu . cRGD-conjugated magnetic-fluorescent liposomes for targeted dual-modality imaging of bone metastasis from prostate cancer. Journal of Liposome Research, 2015, 25( 2): 89– 100
https://doi.org/10.3109/08982104.2014.928890
pmid: 24960451
|
| 203 |
S J, Mattingly M G, O’Toole K T, James , et al.. Magnetic nanoparticle-supported lipid bilayers for drug delivery. Langmuir, 2015, 31( 11): 3326– 3332
https://doi.org/10.1021/la504830z
pmid: 25714501
|
| 204 |
W H, Kong K H, Bae S D, Jo , et al.. Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharmaceutical Research, 2012, 29( 2): 362– 374
https://doi.org/10.1007/s11095-011-0554-y
pmid: 21842305
|
| 205 |
A, Chakraborty J C, Boer C, Selomulya , et al.. Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjugate Chemistry, 2018, 29( 3): 657– 671
https://doi.org/10.1021/acs.bioconjchem.7b00455
pmid: 28876902
|
| 206 |
S, Biswas S H, Medina J J Jr Barchi . Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigen-coated gold nanoparticles. Carbohydrate Research, 2015, 405: 93– 101
https://doi.org/10.1016/j.carres.2014.11.002
pmid: 25556664
|
| 207 |
J, Shi X, Sun X, Zou , et al.. Amino acid-dependent transformations of citrate-coated silver nanoparticles: impact on morphology, stability and toxicity. Toxicology Letters, 2014, 229( 1): 17– 24
https://doi.org/10.1016/j.toxlet.2014.06.014
pmid: 24910988
|
| 208 |
X, Zhu Y, Xie Y, Zhang , et al.. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system. Journal of Biomaterials Applications, 2014, 29( 5): 769– 779
https://doi.org/10.1177/0885328214543211
pmid: 25033825
|
| 209 |
Y, Feng J, Su Z, Zhao , et al.. Differential effects of amino acid surface decoration on the anticancer efficacy of selenium nanoparticles. Dalton Transactions, 2014, 43( 4): 1854– 1861
https://doi.org/10.1039/C3DT52468J
pmid: 24257441
|
| 210 |
H M, Yang H J, Lee C W, Park , et al.. Endosome-escapable magnetic poly(amino acid) nanoparticles for cancer diagnosis and therapy. Chemical Communications, 2011, 47( 18): 5322– 5324
https://doi.org/10.1039/c1cc10371g
pmid: 21451847
|
| 211 |
L, Agemy D, Friedmann-Morvinski V R, Kotamraju , et al.. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108( 42): 17450– 17455
https://doi.org/10.1073/pnas.1114518108
pmid: 21969599
|
| 212 |
Z, Shen T, Liu Z, Yang , et al.. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials, 2020, 235: 119783
https://doi.org/10.1016/j.biomaterials.2020.119783
pmid: 31981762
|
| 213 |
O, Taratula O B, Garbuzenko A M, Chen , et al.. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. Journal of Drug Targeting, 2011, 19( 10): 900– 914
https://doi.org/10.3109/1061186X.2011.622404
pmid: 21981718
|
| 214 |
W, Fei Y, Zhang S, Han , et al.. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. International Journal of Pharmaceutics, 2017, 519( 1–2): 250– 262
https://doi.org/10.1016/j.ijpharm.2017.01.031
pmid: 28109899
|
| 215 |
G F, Luo W H, Chen Y, Liu , et al.. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Scientific Reports, 2014, 4: 6064
https://doi.org/10.1038/srep06064
pmid: 25317538
|
| 216 |
X Z, Yang J Z, Du S, Dou , et al.. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano, 2012, 6( 1): 771– 781
https://doi.org/10.1021/nn204240b
pmid: 22136582
|
| 217 |
K T, Jin Z B, Lu J Y, Chen , et al.. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. Journal of Nanomaterials, 2020, 2020: 9184284
https://doi.org/10.1155/2020/9184284
|
| 218 |
Y, Liu Y, Pan W, Cao , et al.. A tumor microenvironment responsive biodegradable CaCO3/MnO2-based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics, 2019, 9( 23): 6867– 6884
https://doi.org/10.7150/thno.37586
pmid: 31660074
|
| 219 |
H, Meng M, Xue T, Xia , et al.. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano, 2011, 5( 5): 4131– 4144
https://doi.org/10.1021/nn200809t
pmid: 21524062
|
| 220 |
J, Lu M, Liong Z, Li , et al.. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small, 2010, 6( 16): 1794– 1805
https://doi.org/10.1002/smll.201000538
pmid: 20623530
|
| 221 |
T, Chen T, Zhao D, Wei , et al.. Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydrate Polymers, 2013, 92( 2): 1124– 1132
https://doi.org/10.1016/j.carbpol.2012.10.022
pmid: 23399137
|
| 222 |
H, Sharma K, Kumar C, Choudhary , et al.. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44( 2): 672– 679
https://doi.org/10.3109/21691401.2014.978980
pmid: 25406734
|
| 223 |
S, Senapati R, Thakur S P, Verma , et al.. Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions. Journal of Controlled Release, 2016, 224: 186– 198
https://doi.org/10.1016/j.jconrel.2016.01.016
pmid: 26774219
|
| 224 |
J, Chakraborty S, Roychowdhury S, Sengupta , et al.. Mg–Al layered double hydroxide-methotrexate nanohybrid drug delivery system: evaluation of efficacy. Materials Science and Engineering C, 2013, 33( 4): 2168– 2174
https://doi.org/10.1016/j.msec.2013.01.047
pmid: 23498245
|
| 225 |
Y M, Kuo Y, Kuthati R K, Kankala , et al.. Layered double hydroxide nanoparticles to enhance organ-specific targeting and the anti-proliferative effect of cisplatin. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3( 17): 3447– 3458
https://doi.org/10.1039/C4TB01989J
pmid: 32262227
|
| 226 |
H, Asiabi Y, Yamini M, Alipour , et al.. Synthesis and characterization of a novel biocompatible pseudo-hexagonal NaCa-layered double metal hydroxides for smart pH-responsive drug release of dacarbazine and enhanced anticancer activity in malignant melanoma. Materials Science and Engineering C, 2019, 97: 96– 102
https://doi.org/10.1016/j.msec.2018.12.017
pmid: 30678984
|
| 227 |
S, Ray M, Joy B, Sa , et al.. pH dependent chemical stability and release of methotrexate from a novel nanoceramic carrier. RSC Advances, 2015, 5( 49): 39482– 39494
https://doi.org/10.1039/C5RA03546E
|
| 228 |
S, Ray A, Mishra T K, Mandal , et al.. Optimization of the process parameters for the fabrication of a polymer coated layered double hydroxide-methotrexate nanohybrid for the possible treatment of osteosarcoma. RSC Advances, 2015, 5( 124): 102574– 102592
https://doi.org/10.1039/C5RA15859A
|
| 229 |
J, Wen Y, Lv Y, Xu , et al.. Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy. Acta Biomaterialia, 2019, 83: 359– 371
https://doi.org/10.1016/j.actbio.2018.11.009
pmid: 30414486
|
| 230 |
J, Pi J, Jiang H, Cai , et al.. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Delivery, 2017, 24( 1): 1549– 1564
https://doi.org/10.1080/10717544.2017.1386729
pmid: 29019267
|
| 231 |
M, Alibolandi K, Abnous F, Sadeghi , et al.. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: in vitro and in vivo evaluation. International Journal of Pharmaceutics, 2016, 500( 1–2): 162– 178
https://doi.org/10.1016/j.ijpharm.2016.01.040
pmid: 26802496
|
| 232 |
C, Xu B, Wang S Sun . Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. Journal of the American Chemical Society, 2009, 131( 12): 4216– 4217
https://doi.org/10.1021/ja900790v
pmid: 19275156
|
| 233 |
F, Wang Y C, Wang S, Dou , et al.. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5( 5): 3679– 3692
https://doi.org/10.1021/nn200007z
pmid: 21462992
|
| 234 |
B, Haynes Y, Zhang F, Liu , et al.. Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: synthesis and characterization. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12( 3): 745– 757
https://doi.org/10.1016/j.nano.2015.10.010
pmid: 26563438
|
| 235 |
Z, Zhou C, Kennell J Y, Lee , et al.. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13( 2): 403– 410
https://doi.org/10.1016/j.nano.2016.07.016
pmid: 27520723
|
| 236 |
Y, Cheng A C, Samia J D, Meyers , et al.. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. Journal of the American Chemical Society, 2008, 130( 32): 10643– 10647
https://doi.org/10.1021/ja801631c
pmid: 18642918
|
| 237 |
O, Zelphati L S, Uyechi L G, Barron , et al.. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochimica et Biophysica Acta, 1998, 1390( 2): 119– 133
https://doi.org/10.1016/S0005-2760(97)00169-0
pmid: 9507083
|
| 238 |
C, Passirani J P Benoit. Complement activation by injectable colloidal drug carriers. In: Mahato R I, ed. Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids. Boca Raton, FL, USA: CRC Press, 2005
|
| 239 |
I, Brigger C, Dubernet P Couvreur . Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002, 54( 5): 631– 651
https://doi.org/10.1016/S0169-409X(02)00044-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|