Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics in China - Selected Publications from Chinese Universities  2008, Vol. 3 Issue (1): 26-40   https://doi.org/10.1007/s11467-008-0001-7
  本期目录
Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO (110) surface
Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO (110) surface
LI Bin1, ZHAO Jin2, FENG Min3, ONDA Ken4
1.Engineering Center, University of Colorado; Department of Physics and Astronomy, University of Pittsburgh; 2.Department of Physics and Astronomy, University of Pittsburgh; 3.Department of Physics and Astronomy, University of Pittsburgh; Surface Science Center, University of Pittsburgh; 4.Department of Chemistry and Materials Science, Tokyo Institute of Technology;
 全文: PDF(1002 KB)   HTML
Abstract:The femtosecond time-resolved two-photon photoemission (TR-2PP) and the ultra high vacuum (UHV) surface science techniques are integrated to investigate the elec- tronic structures and the interfacial electron transfer dynamics at the atomically ordered adsorbate overlayers on TiO2 single- crystalline surfaces. Our research into the CH3OH/TiO2 system exhibits complex dynamics, providing abundant informa- tion with regard to electron transport and solvation processes in the interfacial solvent structures. These represent the fundamentally physical, photochemical, and photocatalytic reactions of protic chemicals covered with metal-oxides.
出版日期: 2008-03-05
 引用本文:   
. Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO (110) surface[J]. Frontiers of Physics in China - Selected Publications from Chinese Universities, 2008, 3(1): 26-40.
LI Bin, ZHAO Jin, FENG Min, ONDA Ken. Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO (110) surface. Front. Phys. , 2008, 3(1): 26-40.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-008-0001-7
https://academic.hep.com.cn/fop/CN/Y2008/V3/I1/26
1 Einstein A Ann. Phys. (Leipzig) 1905 17132.
doi: null
2 Memmel N Surf. Sci. Rep. 1998 3291.
doi: 10.1016/S0167‐5729(98)00006‐5
3 Smith N V Phys. Rev. B 1985 323549.
doi: 10.1103/PhysRevB.32.3549
4 Lindstorm C D Zhu X Y Chem. Rev. 2006 1064281.
doi: 10.1021/cr0501689
5 Galperin M Nitzan A Phys. Rev. Lett. 2005 95206802.
doi: 10.1103/PhysRevLett.95.206802
6 Petek H Ogawa S Prog. Surf. Sci. 1997 56239.
doi: 10.1016/S0079‐6816(98)00002‐1
7 Li B Ph. D Thesis,University of Pittsburgh 2006 .
doi: null
8 Yariv A Quantum ElectronicsJohn Wiley & Sons 1989 .
doi: null
9 Diels J C Rudolph W Ultrashort Laser PulsePhenomenaAcademic Press 1995 .
doi: null
10 Linsebigler A L Lu G Yates J T Chem. Rev. 1995 95735.
doi: 10.1021/cr00035a013
11 Kamat P V Chem. Rev. 1993 93267.
doi: 10.1021/cr00017a013
12 Grätzel M Nature 2001 414338.
doi: 10.1038/35104607
13 Li B Zhao J Onda K et al.Science 2006 3111436.
doi: 10.1126/science.1122190
14 Onda K Li B Zhao J et al.Science 2005 3081154.
doi: 10.1126/science.1109366
15 Onda K Li B Zhao J et al.Surf. Sci. 2005 59332.
doi: 10.1016/j.susc.2005.06.044
16 Nessler W Ogawa S Nagano H et al.J. Elect. Spect. Rel. Phen. 1998 88–91495.
doi: 10.1016/S0368‐2048(97)00260‐0
17 Petek H Heberle A P Nessler W et al.Phys. Rev. Lett. 1997 794649.
doi: 10.1103/PhysRevLett.79.4649
18 Ogawa S Nagano H Petek H Phys. Rev. Lett. 1997 781339.
doi: 10.1103/PhysRevLett.78.1339
19 Saleh B Teich M C Fundamentals of PhotonicsNew YorkJohnWiley & Sons, INC 1991 .
doi: null
20 Hendry E Wang F Shan J et al.Phys. Rev. B 2004 69081101.
doi: 10.1103/PhysRevB.69.081101
21 Minato T Zhao J Sainoo Y et al.Phys. Rev. Lett.submitted.
doi: null
22 Liu S H J. Phys. Chem. B 2002 10612908.
doi: 10.1021/jp025772r
23 Pshenichnikov M S Baltuska A Wiersma D A Chem. Phys. Lett. 2004 389171.
doi: 10.1016/j.cplett.2004.03.107
24 Hammers-Schiffer S Acc. Chem. Res. 2001 34273.
doi: 10.1021/ar9901117
25 Cukier R I Nocera D G Annu. Rev. Phys. Chem. 1998 49337.
doi: 10.1146/annurev.physchem.49.1.337
26 Stier W Prezhdo O V J. Phys. Chem. B 2002 1068047.
doi: 10.1021/jp014267b
27 Tributsch H Pohlmann L Science 1998 2791891.
doi: 10.1126/science.279.5358.1891
28 Rego L G C Batista V S Am J. Chem. Soc. 2003 1257989.
doi: 10.1021/ja0346330
29 Decornez H Hammes-Schiffer S J. Phys. Chem. A 2000 1049370.
doi: 10.1021/jp001967s
30 Zhao J Li B Onda K et al.Chem. Rev. 2006 1064402.
doi: 10.1021/cr050173c
31 Weida M J Ogawa S Nagano H et al.J. Opt. Soc. Am. B 2000 171443.
doi: 10.1364/JOSAB.17.001443
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed