Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics in China - Selected Publications from Chinese Universities  2008, Vol. 3 Issue (1): 61-68   https://doi.org/10.1007/s11467-008-0011-5
  本期目录
Quark mass and the masses of Goldstone bosons
Quark mass and the masses of Goldstone bosons
ZHOU Li-juan1, MA Wei-xing2, WU Qing3
1.Collaboration Group of Hadron Physics and Non-perturbative QCD Study, Guangxi University of Technology; 2.Collaboration Group of Hadron Physics and Non-perturbative QCD Study, Guangxi University of Technology; Institute of High Energy Physics, Chinese Academy of Sciences; 3.Institute of Physics Science, Qingdao University
 全文: PDF(478 KB)   HTML
Abstract:Based on the Dyson-Schwinger Equations (DSEs) of QCD in the “rainbow” approximation, the fully dressed quark propagator Sf(p) is investigated, and then an algebraic parametrization form of the propagator is obtained as a solution of the equations. The dressed quark amplitudes Af and Bf which built up the fully dressed quark propagator, and the dynamical running masses Mf, which is defined by Af and Bf for light quarks u, d and s, are calculated, respectively. Using the predicted current masses mf, quark local vacuum condensates, and our predicted value of pion decay constant, the masses of Goldstone bosons K, ? and ? and their in-medium values are also evaluated. Our predictions fit to data and to many other different calculations quite well. The numerical results show that the mass of quark is dependent of its momentum p2. The fully dressed quark amplitudes Af and Bf have correct behaviors and can be used for many purposes in our future researches on non-perturbative QCD.
出版日期: 2008-03-05
 引用本文:   
. Quark mass and the masses of Goldstone bosons[J]. Frontiers of Physics in China - Selected Publications from Chinese Universities, 2008, 3(1): 61-68.
ZHOU Li-juan, MA Wei-xing, WU Qing. Quark mass and the masses of Goldstone bosons. Front. Phys. , 2008, 3(1): 61-68.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-008-0011-5
https://academic.hep.com.cn/fop/CN/Y2008/V3/I1/61
1 Dyson F J Phys. Rev. 1949 751736.
doi: 10.1103/PhysRev.75.1736
2 Schwinger J S Proc. Nat. Acad. Sc. 1951 37452.
doi: 10.1073/pnas.37.7.452
3 Salpeter E E Bethe H A Phys. Rev. 1951 841232.
doi: 10.1103/PhysRev.84.1232
4 Anthony H Hrayr Matevosyan Thomas W tandy P C Nuclth/0605057.
doi: null
5 Maris P Roberts C D Tandy P C Phys. Letts. B 1998 420267.
doi: 10.1016/S0370‐2693(97)01535‐9
6 Itzykson C Zuber J B Quantum Field TheoryNew YorkMCGraw-Hill 1996 .
doi: null
7 Wick G C Phys. Rev. 1954 961124.
doi: 10.1103/PhysRev.96.1124
8 Jackiw R Jahnson K Phys. Rev. 1973 82386.
doi: null
9 Roberts C D Williams A G Prog. Part. Nucl. Phys. 1994 33477.
doi: 10.1016/0146‐6410(94)90049‐3
10 Brown N Pennington M R Phys. Rev. D 1989 392723.
doi: 10.1103/PhysRevD.39.2723
11 Dorokhov A E et al.Phys. Rev. D 1997 574052.
doi: null
12 Ward J Phys. Rev. 1950 78182.
doi: 10.1103/PhysRev.78.182
13 Takahashi Y Cimento Nuovo 1957 6370.
doi: null
14 Marciano W Pagels H Phys. Rep. 1978 36137.
doi: 10.1016/0370‐1573(78)90208‐9
15 Krassnigg A Roberts C D Wright S V Nucl-th/0608039.
doi: null
16 Zhu L J Zhou L J Ma W X Commun. Theor. Phys. 2005 44(1)117.
doi: null
17 Roberts C D Cahill R T sevior M E Iannella N Phys. Rev.D 1994 49125.
doi: 10.1103/PhysRevD.49.125
18 Curtis D C Pennington M R Phys. Rev. D 1992 462663Erratum, Phys. Rev. D 1993 471729.
doi: null
19 Ma W X Shen P N Zhou L J Commun. Theor. Phys. 2002 38571.
doi: null
20 Bochicchio M et al.Nucl. Phys. B 1985 262331.
doi: 10.1016/0550‐3213(85)90290‐1
21 Becirevic D et al.(APE collaboration) Phys. Rev. D 2000 61114507hep-ph /9909082.
doi: 10.1103/PhysRevD.61.114507
22 Praschifka J chahill R T Roberts C D Int. J. Mod. Phys., A 1989 44929.
doi: 10.1142/S0217751X89002090
23 Roberts C D Prog. Part. Nucl. Phys. 2000 45511.
doi: 10.1016/S0146‐6410(00)90011‐5
24 Cahill R T Roberts C D Phys. Rev. D 1985 322419.
doi: 10.1103/PhysRevD.32.2419
25 Gell-Mann M Oakes R J Renner B Phys. Rev. 1968 1752195.
doi: 10.1103/PhysRev.175.2195
26 Kisslinger L S Harry M A Linsuain D Phys. Rev. C 1999 60065204-1.
doi: 10.1103/PhysRevC.60.065204
27 Gasser J Leutwyler H Ann. Phys. 1984 158142.
doi: 10.1016/0003‐4916(84)90242‐2
28 Gasser J Leutwyler H Nucl. Phys. B 1985 250465.
doi: 10.1016/0550‐3213(85)90492‐4
29 Gasser J Lect, Notes Phys. 2004 6291.
doi: null
30 Weinberg S Trans. NY Acad. Sci. 1977 38185.
doi: null
31 Morte Michele Della Hoffman Roland Knechtli Francesco et al.DESY 05-124, HU-EP 05/31, DFB/ CPP -05-32.
doi: null
32 Shifman M A Vainshtein A I Zakharov V I Nucl. Phy. B 1979 147385.
doi: 10.1016/0550‐3213(79)90022‐1
33 Narison S Spectral QCD sum RuleSingaporeWorld Scienc 1998 .
doi: null
34 Polyakov M V Weiss C Phys. Letts. B 1996 387841.
doi: 10.1016/0370‐2693(96)01098‐2
35 Bentez M A Barnett R M Caso C Particle Data Group, Particle Propertis Data Booklet, April 1990,from: Review of particle Propeerties Phys. Letts.B April 1990 239.
doi: null
36 Zhou L J Ma W X Commun. Theor. Phys. 2006 45(6)1085.
doi: null
37 Jamin M Oller J A Pich A Eur. Phys. J., C 2002 24237.
doi: 10.1007/s100520200930
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed