Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics in China - Selected Publications from Chinese Universities  2008, Vol. 3 Issue (2): 173-180   https://doi.org/10.1007/s11467-008-0013-3
  本期目录
Synthesis and photoluminescence studies of silicon nanoparticles embedded in silicon compound films
Synthesis and photoluminescence studies of silicon nanoparticles embedded in silicon compound films
HUANG Rao1, MA Li-bo1, WANG Yong-qian1, CAO Ze-xian1, YE Jian-ping2
1.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, The Chinese Academy of Sciences; 2.Key Laboratory of Photochemistry, Institute of Chemistry, The Chinese Academy of Sciences;
 全文: PDF(1897 KB)   HTML
Abstract:High-density silicon nanoparticles with well-controlled sizes were grown onto cold substrates in amorphous SiNx and SiC matrices by plasma-enhanced chemical vapor deposition. Strong, tunable photoluminescence across the whole visible light range has been measured at room temperature from such samples without invoking any post-treatment, and the spectral features can find a qualitative explanation in the framework of quantum confinement effect. Moreover, the decay time was for the first time brought down to within one nanosecond. These excellent features make the silicon nanostructures discussed here very promising candidates for light-emitting units in photonic and optoelectronic applications.
出版日期: 2008-06-05
 引用本文:   
. Synthesis and photoluminescence studies of silicon nanoparticles embedded in silicon compound films[J]. Frontiers of Physics in China - Selected Publications from Chinese Universities, 2008, 3(2): 173-180.
HUANG Rao, MA Li-bo, WANG Yong-qian, CAO Ze-xian, YE Jian-ping. Synthesis and photoluminescence studies of silicon nanoparticles embedded in silicon compound films. Front. Phys. , 2008, 3(2): 173-180.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-008-0013-3
https://academic.hep.com.cn/fop/CN/Y2008/V3/I2/173
1 Canham L T Appl. Phys. Lett. 1990 571046.
doi: 10.1063/1.103561
2 Ledoux G Gong J Huisken F Guillois O Reynaud C Appl. Phys. Lett. 2002 804834.
doi: 10.1063/1.1485302
3 Satoshi N Keiji N Yoshihiko K J. Non-Cryst. Solids 2002 299–3021095
4 Shklyaev A A Nakamura Y Ichikawa M J. Appl. Phys. 2007 101033532.
doi: 10.1063/1.2435063
5 Marzia C Anja W Vincent P Caroline B Hubert C Alain C Appl. Phys. Lett. 2005 87251911.
doi: 10.1063/1.2143130
6 Liu C Li C R Ji A L Ma L B Wang Y Q Cao Z X Nanotechnology 2005 161.
doi: 10.1088/0957‐4484/16/1/001
7 Fabio I Giorgia F Corrado S J. Appl. Phys. 2000 871295.
doi: 10.1063/1.372013
8 Chen Z Wang Y X Zou Y M Wang J W Li Y Zhang H J Appl.Phys. Lett. 2006 89141913.
doi: 10.1063/1.2360231
9 Leonid K Markku R Sergei N Appl. Phys. Lett. 2005 86141911.
doi: 10.1063/1.1899257
10 Terranova M L Piccirillo S Sessa V Botti S Rossi M Appl. Phys. Lett. 1999 743146.
doi: 10.1063/1.124088
11 Ma L B Song R Huang R Du Y Ye J P Lin Y Wang Y Q Journal of Luminescence 2007 126536.
doi: 10.1016/j.jlumin.2006.10.002
12 Pellegrino P Pe'rez-Rodriguez A Garrido B Gonza'lez-Varona O Morante J R Appl. Phys. Lett. 2004 8425.
doi: 10.1063/1.1634692
13 Calcott P D J Nash K J Canham L T Kane M J Brumhead D J. Phys.: Condens. Matter 1993 5L91.
doi: 10.1088/0953‐8984/5/7/003
14 Ossicini S Pavesi L Priolo F Light Emitting Silicon for MicrophotonicsBerlin, HeidelbergSpringer 2003 172
15 Takagahara T Takeda K Phys. Rev. B 1996 53R4205.
doi: 10.1103/PhysRevB.53.R4205
16 Leung K Whaley K B Phys. Rev. B 1997 567455.
doi: 10.1103/PhysRevB.56.7455
17 Koyama H Ozaki T Koshida N Phys. Rev. B 1995 52R11561.
doi: 10.1103/PhysRevB.52.R11561
18 Brunner K Eberl K Winter W Phys. Rev. Lett. 1996 69303.
doi: 10.1103/PhysRevLett.76.303
19 Xu S J Yu M B Rusli. Yoon S F Che C M Appl. Phys. Lett. 2000 762550.
doi: 10.1063/1.126382
20 Kassiba A Makowska-Janusik M Bouclé J Phys. Rev. B 2002 66155317.
doi: 10.1103/PhysRevB.66.155317
21 Wu X L Fan J Y Qiu T Yang X Siu G G Chu Paul K Phys. Rev. Lett. 2005 94026102.
doi: 10.1103/PhysRevLett.94.026102
22 Huang R Ma L B Song R Du Y Shi H J Ye J P Lin Y Cao Z X Nanotechnology 2007 18445605.
doi: 10.1088/0957‐4484/18/44/445605
23 Konstantinov A O Henry A Harris C I Janz'en E Appl. Phys.Lett. 1995 662250.
doi: 10.1063/1.113182
24 Liu C Li C R Ji A L Ma L B Wang Y Q Cao Z X Nanotechnology 2005 16940.
doi: 10.1088/0957‐4484/16/6/053
25 Ma L B Song R Miao Y M Li C R Du Y Wang Y Q Cao Z X Appl. Phys. Lett. 2006 88093102.
doi: 10.1063/1.2179613
26 Ledoux G Gong J Huisken F Guillois O Reynaud C Appl. Phys. Lett. 2002 804834.
doi: 10.1063/1.1485302
27 Rinnert H Vergnat M Marchal G Appl. Phys. Lett. 1998 723157.
doi: 10.1063/1.121578
28 Diu B Guthmann C Lederer D Roulet B Élémentsde Physique StatistiqueParisHermann 1998
29 Liu C Li C R Ji A L Ma L B Wang Y Q Cao Z X Appl. Phys. Lett. 2005 86223111.
doi: 10.1063/1.1943499
30 Hu Z Liao X Diao H Kong G Zeng X Xu Y J. Cryst. Growth 2004 2647.
doi: 10.1016/j.jcrysgro.2003.12.013
31 Linnros J Lalic N Galeckas A Grivickas V J. Appl. Phys. 2005 866128.
doi: 10.1063/1.371663
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed