Abstract:By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions, thermoelectric generators could be an important part of the solution to today’s energy challenge. There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper, we will review recent efforts on improving thermoelectric efficiency. Particularly, several novel proof-of-principle approaches such as phonon disorder in phonon-glasselectron crystals, low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.
出版日期: 2008-09-05
引用本文:
. Recent advances on thermoelectric materials[J]. Frontiers of Physics in China - Selected Publications from Chinese Universities, 0, (): 269-279.
ZHENG Jin-cheng. Recent advances on thermoelectric materials. Front. Phys. , 0, (): 269-279.
Basic Research Needsfor Solar Energy Utilization. , Report of the BasicEnergy Sciences Workshop on Solar Energy Utilization, USA: DOE, April 18–21, 2005
F. J.DiSalvo, Science, 1999, 285: 703. doi: 10.1126/science.285.5428.703
4
G. S.Nolas, D. T.Morelli, and T. M.Tritt, Annu. Rev. Mater. Sci., 1999, 29: 89. doi: 10.1146/annurev.matsci.29.1.89
5
S. B.Riffat and X. L.Ma, Appl. Thermal Engineering, 2003, 23: 913. doi: 10.1016/S1359‐4311(03)00012‐7
6
S. B.Riffat and X. L.Ma, Int. J. Energy Res., 2004, 28:753. doi: 10.1002/er.991
7
M. S.Dresselhaus, G.Chen, M. Y.Tang, R. G.Yang, H.Lee, D. Z.Wang, Z. F.Ren, J.-P.Fleurial, and P.Gogna, Adv. Mater., 2007, 19: 1043. doi: 10.1002/adma.200600527
8
G. J.Snyder and E. S.Toberer, Nature Materials, 2008, 7: 105. doi: 10.1038/nmat2090
H. J.Goldsmid, Electronic Refrigeration, London: Pion, 1986 : 10
12
G. D.Mahan, and J. O.Sofo, Proc. Natl. Acad. Sci.USA, 1996, 93: 7436. doi: 10.1073/pnas.93.15.7436
13
J.Yang, Designing Advanced Thermoelectric Materials for Automotive Applications,2004 DOE/EPRI High Efficiency Thermoelectric Workshop, CA, San Diego, Feb. 19, 2004
Data obtained from database of “ISI Web of Knowledge”with search option of “thermoelectric or thermoelectrics”in Title only, http://www.isiwebofknowledge.com/, accessed March19, 2008
16
G. K. H.Madsen, J. Am. Chem. Soc., 2006, 128: 12140. doi: 10.1021/ja062526a
17
A. F.Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling Information, London: Infosearch, 1957
18
T. J.Scheidemantel, C.Ambrosch-Draxl, T.Thonhauser, J. V.Badding, and J. O.Sofo, Phys. Rev. B, 2003, 68: 125210. doi: 10.1103/PhysRevB.68.125210
19
T.Thonhauser, T. J.Scheidemantel, J. O.Sofo, J. V.Badding, and G. D.Mahan, Phys. Rev. B, 2003, 68: 085201. doi: 10.1103/PhysRevB.68.085201
20
P.Blaha, K.Schwarz, G. K. H.Madsen, D.Kvasnicka, and J.Luitz, WIEN2k, An AugmentedPlane Wave + Local Orbitals Program for Calculating Crystal Properties, Austria: Karlheinz Schwarz, Techn. Universit¨at Wien, 2001, ISBN 3-9501031-1-2
21
P.Hohenberg and W.Kohn, Phys. Rev., 1964, 136: B864. doi: 10.1103/PhysRev.136.B864
22
W.Kohn and L. J.Sham, Phys. Rev., 1965, 140: A1133. doi: 10.1103/PhysRev.140.A1133
23
B. R.Nag, Electron Transport in Compound Semiconductors, New York: Springer, 1980 : 171
24
T.Thonhauser, T. J.Scheidemantel, and J. O.Sofo, Appl. Phys. Lett., 2004, 85: 588. doi: 10.1063/1.1775286
25
G. K. H.Madsen and D. J.Singh, Comput. Phys. Commun., 2006, 175: 67. doi: 10.1016/j.cpc.2006.03.007
P.Oleynikov, L.Wu, J. C.Zheng, V.V.Volkov, R.F.Klie, Y.Zhu, H.Inada, K.Nakamura, and R.Twestern, Structural analysis of layered Ca3Co4O9 thermoelectrics using aberrationcorrected STEM and EELS, Advanced Electron Microscopy in MaterialsPhysics Workshop, Nov. 7–8, 2007, Brookhaven National Laboratory, USA
45
P.Oleynikov, J.Hanson, J. C.Zheng, L.Wu, V.Volkov, Q.Jie, Q.Li, and Y.Zhu, Electron Microscopy Study of LayeredThermoelectric Cobalt Oxide [Ca2CoO3]0.62CoO2, Workshop of “Electronic Structure and Functionality of ThermoelectricMaterials”, Reykjavik, Iceland, Jul.30–Aug. 1, 2007
46
L. D.Hicks and M. S.Dresselhaus, Phys. Rev., 1993, 47: 12727
47
L. D.Hicks and M. S.Dresselhaus, Phys. Rev., 1993, 47: 16631
G. A.Slack and V.Tsoukala, J. Appl. Phys., 1994, 76: 1665. doi: 10.1063/1.357750
61
B. C.Sales, D.Mandrus, and R. K.Williams, Science, 1996, 272: 1325. doi: 10.1126/science.272.5266.1325
62
G. S.Nolas, J. L.Cohn, G.Slack, and S. B.Schujman, Appl. Phys. Lett., 1998, 73: 178. doi: 10.1063/1.121747
63
J. L.Cohn, G. S.Nolas, V.Fessatidis, T. H.Metcalf, and G. A.Slack, Phys. Rev. Lett., 1999, 82: 779. doi: 10.1103/PhysRevLett.82.779
64
J. F.Meng, N. V.Chandra Shekar, J. V.Badding, and G. S.Nolas, J. Appl. Phys., 2001, 89: 1730. doi: 10.1063/1.1334366
65
A. M.Guloy, R.Ramlau, Z.Tang, W.Schnelle, M.Baitinger, and Y.Grin, Nature, 2006, 443: 320. doi: 10.1038/nature05145
66
C.Uher, J.Yang, S.Hu, D. T.Morelli, and G. P.Meisner, Phys. Rev. B, 1999, 59: 8615. doi: 10.1103/PhysRevB.59.8615
67
K. F.Hsu, S.Loo, F.Guo, W.Chen, J. S.Dyck, C.Uher, T.Hogan, E. K.Polychroniadis, and M. G.Kanatzidis, Science, 2004, 303: 816. doi: 10.1126/science.1092963
68
Q.Jie, J.Zhou, L.Wu, J. C.Zheng, Y.Zhu, Q.Li, and J.Yang, Impact of NanoscaleSubstructures on the Thermoelectric Properties of AgPbmSbTe2+m, 2007 MRS Fall Meeting, Boston (U3.8)
69
L.Wu, J. C.Zheng, Q.Jie, J.Zhou, Q.Li, Y.Zhu, and J.Yang, Measurement of ChargeDistribution in Thermoelectric AgPbmSbTe2+m by Quantitative Electron Diffraction, Workshopof “Electronic Structure and Functionality of ThermoelectricMaterials”, Reykjavik, Iceland, Jul.30–Aug. 1, 2007
70
Y. Y.Wang, N. S.Rogado, R. J.Cava, and N. P.Ong, Nature, 2003, 423: 425. doi: 10.1038/nature01639