Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions
Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions
Chuan-kui WANG (王传奎)1(), Bin ZOU (邹斌)2, Xiu-neng SONG (宋秀能)1, Ying-de LI (李英德)3, Zong-liang LI (李宗良)1, Li-li LIN (蔺丽丽)1
1. College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2. College of Science, Minzu University of China, Beijing 100081, China; 3. Department of Physics and Electronic Science, Weifang College, Weifang 261061, China
The inelastic electron tunneling spectroscopy (IETS) of semifluorinated hexadecanethiol junctions is theoretically studied. The numerical results show that the C–F vibration modes of semifluorinated alkanethiol series can not be detected, and the C–H stretching mode in IETS is related to the CH2 vibration. It is demonstrated that the Raman modes are preferred over IR modes in IETS, which is in good agreement with the experimental measurements presented by Beebe et al. [Nano Lett., 2007, 7(5): 1364].
. Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions[J]. Frontiers of Physics, 2009, 4(3): 415-419.
Chuan-kui WANG (王传奎), Bin ZOU (邹斌), Xiu-neng SONG (宋秀能), Ying-de LI (李英德), Zong-liang LI (李宗良), Li-li LIN (蔺丽丽). Simulations of inelastic electron tunneling spectroscopy of semifluorinated hexadecanethiol junctions. Front. Phys. , 2009, 4(3): 415-419.
A. Troisi, M. A. Ratner, and A. Nitzan, J. Chem. Phys. , 2003, 118(13): 6072 doi: 10.1063/1.1556854
2
M. Galperin, M. A. Ratner, and A. Nitzan, J. Chem. Phys. , 2004, 121(23): 11965 doi: 10.1063/1.1814076
3
A. Pecchia, A. Di Carlo, A. Gagliardi, S. Sanna, T. Frauenheim, and R. Gutierrez, Nano Lett. , 2004, 4(11): 2109 doi: 10.1021/nl048841h
4
W. Wang, T. Lee, I. Kretzschmar, and M. A. Reed, Nano Lett. , 2004, 4(4): 643 doi: 10.1021/nl049870v
5
A. S. Hallb?ck, N. Oncel, J. Huskens, H. J. W. Zandvliet, and B. Poelsema, Nano Lett. , 2004, 4(12): 2393 doi: 10.1021/nl0485253
6
J. Jiang, M. Kula, W. Lu, and Y. Luo, Nano Lett. , 2005, 5(8): 1551 doi: 10.1021/nl050789h
7
M. Kula, J. Jiang, and Y. Luo, Nano Lett. , 2006, 6(8): 1693 doi: 10.1021/nl060951w
8
G. C. Solomon, A. Gagliardi, A.Pecchia, T. Frauenheim, A. D. Carlo, J. R. Reimers, and N. S. Hush, J. Chem. Phys. , 2006, 124(9): 094704 doi: 10.1063/1.2166362
9
A. Troisi and M. A. Ratner, Phys. Chem. Chem. Phys. , 2007, 9(19): 2421 doi: 10.1039/b702377d
10
D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H. Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, James M. Tour, and R. Shashidhar, Nature Mater. , 2006, 5(11): 901 doi: 10.1038/nmat1754
11
A. Troisi and M. A. Ratner, Nano Lett. , 2006, 6(8): 1784 doi: 10.1021/nl0609394
12
A. Troisi and M. A. Ratner, J. Chem. Phys. , 2006, 125(21): 214709 doi: 10.1063/1.2390698
13
J. R. Reimers, G. C. Solomon, A. Gagliardi, A. Bili, N. S. Hush, T. Frauenheim, A. Di Carlo, and A. Pecchia, J. Phys. Chem. A , 2007, 111(26): 5692 doi: 10.1021/jp070598y
14
J. M. Beebe, H. J. Moore, T. R. Lee, and J. G. Kushmerick, Nano Lett. , 2007, 7(5): 1364 doi: 10.1021/nl070460r
15
C. K.Wang, Y. Fu, and Y. Luo, Phys. Chem. Chem. Phys. , 2001, 3: 5017 doi: 10.1039/b105279a
16
J. Jiang, M. Kula, and Y. Luo, J. Chem. Phys. , 2006, 124(3): 034708 doi: 10.1063/1.2159490
17
M. J. Frisch, G. W. Trucks, , Gaussian 03, Gaussian, Inc., Pittsburgh PA , 2003
18
Jun Jiang, Chuan-kui Wang, and Yi Luo, Quantum Chemistry for Molecular Electronics (QCME-V1.1), Sweden: Royal Institute of Technology, 2006