Qiang FU (付强)1,2, Lan-feng YUAN (袁岚峰)1, Yi LUO (罗毅)1,2, Jin-long YANG (杨金龙)1()
1. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 2. Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
Systems at the nanoscale can exhibit distinctive and unexpected properties in electrical, magnetic, mechanical, and chemical aspects. Understanding these properties not only is of importance from the fundamental scientific view but also offers great opportunities for future applications. Theoretical calculations can provide important information to interpret, modify, and predict the novel properties of objects at the nanoscale and therefore play a significant role in the process of exploring the nano world. In this review, six different areas are briefly presented, namely, prediction of new stable structures, modification of properties (especially the electronic structures), design of novel devices for applications, the structures and catalytic effects of clusters, the mechanical and transport properties of gold nanowires, and improvement of materials for hydrogen storage. Based on these examples, we show what can be done and what can be found in the investigations of nanoscale systems with participation of theoretical calculations.
. Exploring at nanoscale from first principles[J]. Frontiers of Physics, 0, (): 256-268.
Qiang FU (付强), Lan-feng YUAN (袁岚峰), Yi LUO (罗毅), Jin-long YANG (杨金龙). Exploring at nanoscale from first principles. Front. Phys. , 0, (): 256-268.
R. P. Feynman, There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics. Lecture at 1959 APS Meeting. The Archives, California Institute of Technology , see http://www.its. caltech.edu/ feynman/plenty.html, 1959
2
Britannica online encyclopedia article on nanotechnology, see http://www.britannica.com/EBchecked/topic /962484/nanotechnology
3
H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, Nature , 1985, 318: 162 doi: 10.1038/318162a0
J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter , 2002, 14: 2745 doi: 10.1088/0953-8984/14/11/302
9
G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. , 2001, 22: 931 doi: 10.1002/jcc.1056
10
B. L. Zhang, C. Z. Wang, K. M. Ho, C. H. Xu, and C. T. Chan, J. Chem. Phys. , 1992, 97: 5007 doi: 10.1063/1.463854
11
B. L. Zhang, C. Z. Wang, K. M. Ho, C. H. Xu, and C. T. Chan, J. Chem. Phys. , 1993, 98: 3095 doi: 10.1063/1.464084
12
L. Senapati, J. Schrier, and K. B. Whaley, Nano Lett. , 2004, 4: 2073 doi: 10.1021/nl049164u
13
J. Lu, R. F. Sabirianov, W. N. Mei, Y. Gao, C. G. Duan, and X. C. Zeng, J. Phys. Chem. B , 2006, 110: 23637 doi: 10.1021/jp0662395
14
K. D. Wang, J. Zhao, S. F. Yang, L. Chen, Q. X. Li, B. Wang, S. H. Yang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett. , 2003, 91: 185504 doi: 10.1103/PhysRevLett.91.185504
15
G. L. Lu, K. M. Deng, H. P. Wu, J. L. Yang, and X. Wang, J. Chem. Phys. , 2006, 124: 054305 doi: 10.1063/1.2162895
16
K. Tan and X. Lu, J. Phys. Chem. A , 2006, 110: 1171 doi: 10.1021/jp056145f
17
C. M. Tang, Y. B. Yuan, K. M. Deng, Y. Z. Liu, X. Y. Li, J. L. Yang, and X. Wang, J. Chem. Phys. , 2006, 125: 104307 doi: 10.1063/1.2339022
18
H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. , 2000, 84: 2917 doi: 10.1103/PhysRevLett.84.2917
J. Zhao, C. G. Zeng, X. Cheng, K. D. Wang, G. W. Wang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett. , 2005, 95: 045502 doi: 10.1103/PhysRevLett.95.045502
59
R. H. Xie, G. W. Bryant, J. J. Zhao, V. H. Smith, A. Di Carlo, and A. Pecchia, Phys. Rev. Lett. , 2003, 90: 206602 doi: 10.1103/PhysRevLett.90.206602
60
A. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nature Mater. , 2005, 4: 335 doi: 10.1038/nmat1349
61
V. M. Garcia-Suarez, J. Ferrer, and C. J. Lambert, Phys. Rev. Lett. , 2006, 96: 106804 doi: 10.1103/PhysRevLett.96.106804
H. Hakkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. S. Wang, J. Phys. Chem. A , 2003, 107: 6168 doi: 10.1021/jp035437i
77
S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng, Proc. Natl. Acad. Sci. USA , 2006, 103: 8326 doi: 10.1073/pnas.0600637103
78
J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science , 2003, 299: 864 doi: 10.1126/science.1079879
79
P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke, Science , 2008, 321: 674 doi: 10.1126/science.1161166
80
M. P. Johansson, D. Sundholm, and J. Vaara, Angew. Chem.-Int. Edit. , 2004, 43: 2678 doi: 10.1002/anie.200453986
81
A. Lechtken, D. Schooss, J. R. Stairs, M. N. Blom, F. Furche, N. Morgner, O. Kostko, B. von Issendorff, and M. M. Kappes, Angew. Chem.-Int. Edit. , 2007, 46: 2944 doi: 10.1002/anie.200604760
82
Y. Gao and X. C. Zeng, J. Am. Chem. Soc. , 2005, 127: 3698 doi: 10.1021/ja050435s
83
L. M. Wang, S. Bulusu, H. J. Zhai, X. C. Zeng, and L. S. Wang, Angew. Chem.-Int. Edit. , 2007, 46: 2915 doi: 10.1002/anie.200700060
84
L. M. Wang, S. Bulusu, W. Huang, R. Pal, L. S. Wang, and X. C. Zeng, J. Am. Chem. Soc. , 2007, 129: 15136 doi: 10.1021/ja077465a
85
J. L. Wang, J. L. Bai, J. Jellinek, and X. C. Zeng, J. Am. Chem. Soc. , 2007, 129: 4110 doi: 10.1021/ja0664234
X. Li, B. Kiran, J. Li, H. J. Zhai, and L. S. Wang, Angew. Chem.-Int. Edit. , 2002, 41: 4786 doi: 10.1002/anie.200290048
89
J. P. Dognon, C. Clavaguera, and P. Pyykko, Angew. Chem.-Int. Edit. , 2007, 46: 1427 doi: 10.1002/anie.200604198
90
Z. F. Chen, S. Neukermans, X. Wang, E. Janssens, Z. Zhou, R. E. Silverans, R. B. King, P. V. Schleyer, and P. Lievens, J. Am. Chem. Soc. , 2006, 128: 12829 doi: 10.1021/ja062868g
91
M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. , 1987, 2: 405 doi: 10.1246/cl.1987.405
92
X. L. Ding, Z. Y. Li, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2004, 120: 9594 doi: 10.1063/1.1665323
93
X. L. Ding, Z. Y. Li, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2004, 121: 2558 doi: 10.1063/1.1769359
94
B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science , 2005, 307: 403 doi: 10.1126/science.1104168
95
L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Woste, U. Heiz, H. Hakkinen, and U. Landman, J. Am. Chem. Soc. , 2003, 125: 10437 doi: 10.1021/ja027926m
96
W. An, Y. Pei, and X. C. Zeng, Nano Lett. , 2008, 8: 195 doi: 10.1021/nl072409t
97
H. Hakkinen, W. Abbet, A. Sanchez, U. Heiz, and U. Landman, Angew. Chem.-Int. Edit. , 2003, 42: 1297 doi: 10.1002/anie.200390334
98
U. Landman, B. Yoon, C. Zhang, U. Heiz, and M. Arenz, Topics in Catal. , 2007, 44: 145 doi: 10.1007/s11244-007-0288-6
99
D. Ricci, A. Bongiorno, G. Pacchioni, and U. Landman, Phys. Rev. Lett. , 2006, 97: 036106 doi: 10.1103/PhysRevLett.97.036106
100
M. Sterrer, T. Risse, M. Heyde, H. P. Rust, and H. J. Freund, Phys. Rev. Lett. , 2007, 98: 206103 doi: 10.1103/PhysRevLett.98.206103
P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, and R. D. Kornberg, Science , 2007, 318: 430 doi: 10.1126/science.1148624
104
J. Akola, M. Walter, R. L. Whetten, H. Hakkinen, and H. Gronbeck, J. Am. Chem. Soc. , 2008, 130: 3756 doi: 10.1021/ja800594p
105
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science , 2001, 294: 571 doi: 10.1126/science.1064354
M. R. Sorensen, M. Brandbyge, and K. W. Jacobsen, Phys. Rev. B , 1998, 57: 3283 doi: 10.1103/PhysRevB.57.3283
110
G. Rubio-Bollinger, S. R. Bahn, N. Agrait, K. W. Jacobsen, and S. Vieira, Phys. Rev. Lett. , 2001, 87: 026101 doi: 10.1103/PhysRevLett.87.026101
111
E. Z. da Silva, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. , 2001, 87: 256102 doi: 10.1103/PhysRevLett.87.256102
112
E. Tosatti, S. Prestipino, S. Kostlmeier, A. Dal Corso, and F. D. Di Tolla, Science , 2001, 291: 288 doi: 10.1126/science.291.5502.288
113
P. Z. Coura, S. B. Legoas, A. S. Moreira, F. Sato, V. Rodrigues, S. O. Dantas, D. Ugarte, and D. S. Galvao, Nano Lett. , 2004, 4: 1187 doi: 10.1021/nl049725h
114
P. Jelinek, R. Perez, J. Ortega, and F. Flores, Phys. Rev. B , 2008, 77: 115447 doi: 10.1103/PhysRevB.77.115447
115
Y. Leng, Q. Pu, P. T. Cummings, J. Am. Chem. Soc. , 2008, 130: 17907 doi: 10.1021/ja806319g
116
E. Z. da Silva, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. , 2001, 87: 256102 doi: 10.1103/PhysRevLett.87.256102
117
D. Kruger, H. Fuchs, R. Rousseau, D. Marx, and M. Parrinello, Phys. Rev. Lett. , 2002, 89: 186402 doi: 10.1103/PhysRevLett.89.186402