Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Front. Phys.   2009, Vol. 4 Issue (4): 487-496   https://doi.org/10.1007/s11467-009-0066-y
  Research articles 本期目录
One-dimensional self-assembly of inorganic nanoparticles
One-dimensional self-assembly of inorganic nanoparticles
Tao HU(胡涛)1,Yan GAO(高燕)2,Zhi-yong TANG(唐智勇)2,Zhen-long WANG(王振龙)3, 4,
1.School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150080, China; 2.National Center of Nanoscience and Technology, Beijing 100190, China; 3.School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150080, China;Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150080, China; 4.2009-11-03 23:31:35;
 全文: PDF(820 KB)  
Abstract:This review is focused on the recent research progresses on one-dimensional (1-D) inorganic nanoparticle (NP) assemblies. First, we introduce some preparation methods of 1-D NP assemblies, which are the base of the investigation to 1-D NP assemblies. In the following part, we discuss the formation mechanism of 1-D NP assemblies, which is very important for us to understand the self-assembly process. We also summarize the novel properties of 1-D NP assemblies. Finally, we outlook the development of 1-D NP assemblies in the near future. We believe that the scientific and technical potentials of NP assemblies are immense, and their future is bright.
Key wordsone-dimensional assemblies    inorganic nanoparticles    preparation methods    formation mechanism    properties
出版日期: 2009-12-05
 引用本文:   
. One-dimensional self-assembly of inorganic nanoparticles[J]. Front. Phys. , 2009, 4(4): 487-496.
Tao HU(胡涛), Yan GAO(高燕), Zhi-yong TANG(唐智勇), Zhen-long WANG(王振龙). One-dimensional self-assembly of inorganic nanoparticles. Front. Phys. , 2009, 4(4): 487-496.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-009-0066-y
https://academic.hep.com.cn/fop/CN/Y2009/V4/I4/487
A. P. Alivisatos, Science, 1996, 271: 933

doi: 10.1126/science.271.5251.933
D. L. Feldheim and C. D. Keating, Chem. Soc. Rev., 1998, 27: 1

doi: 10.1039/a827001z
Z. Y. Tang and N. A. Kotov, Adv. Funct. Mater., 2005, 17: 951
C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci., 2000, 30: 545

doi: 10.1146/annurev.matsci.30.1.545
M. P. Pileni, J. Phys. Chem. B, 2001, 105: 3358

doi: 10.1021/jp0039520
S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater., 2001, 13: 1501

doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Hard, B. E. Koel, and A. A. G. Requicha, Nature Mater., 2003, 2: 229

doi: 10.1038/nmat852
Z. L. Wang, Adv. Mater., 2000, 12: 1295

doi: 10.1002/1521-4095(200009)12:17<1295::AID-ADMA1295>3.0.CO;2-B
J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res., 1999, 32: 435

doi: 10.1021/ar9700365
F. Cerrina and C. Marrian, MRS Bull., 1996, December: 56
S. B. Frank and H. F. Glenn, Physics Today, 1999, 52: 32
N. C. Seeman, Annu. Rev. Bio. Phys., 1998, 27: 225
J. D. Le, Y. Pinto, N. C. Seeman, K. Musier-Forsyth, T. A. Taton, and R. A. Kiehl, Nano Lett., 2004, 4: 2343

doi: 10.1021/nl048635+
N. C. Seeman, Curr. Opin. Struct. Biol., 1996, 6: 519

doi: 10.1016/S0959-440X(96)80118-7
J. Zhang, Y. Liu, Y. Ke, and H. Yan, NanoLett., 2006, 6: 248

doi: 10.1021/nl052210l
M. C. SanMartin, C. Gruss, and J. M. Carazo, J. Mol. Bio., 1997, 268: 15

doi: 10.1006/jmbi.1997.0952
E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature, 1998, 391: 775

doi: 10.1038/35826
J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, and H. K. Schackert, Adv. Mater., 2000, 12: 507

doi: 10.1002/(SICI)1521-4095(200004)12:7<507::AID-ADMA507>3.0.CO;2-G
C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature, 1996, 382: 607

doi: 10.1038/382607a0
M. G. Warner and J. E. Hutchison, Nat. Mater., 2003, 2: 272

doi: 10.1038/nmat853
K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, and E. Braun, Science, 2002, 297: 72

doi: 10.1126/science.1071247
A. Kumar, M. Pattarkine, M. Bhadbhade, A. B. Mandale, K. N. Ganesh, S. S. Datar, C. V. Dharmadhikari, and M. Sastry, Adv. Mater., 2001, 13: 341

doi: 10.1002/1521-4095(200103)13:5<341::AID-ADMA341>3.0.CO;2-X
O. Harnack, W. E. Ford, A. Yasuda, and J. M. Wessels, Nano Lett., 2002, 2: 919

doi: 10.1021/nl020259a
W. E. Ford, O. Harnack, A. Yasuda, and J. M. Wessels, Adv. Mater., 2001, 13: 1793

doi: 10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V
P. Alivisatos, Nature Biotechnol., 2004, 22: 47

doi: 10.1038/nbt927
T. Nishinaka, Y. Doi, M. Hashimoto, A. Nakamura, Y. Matsushita, J. Kumaki, and E. Yashima, J. Am. Chem. Soc., 2005, 127: 8120

doi: 10.1021/ja050487h
S. Kundu and H. Liang, Langmuir, 2008, 24: 9668

doi: 10.1021/la801633r
R. Kitaura, N. Imazu, K. Kobayashi, and H. Shinohara, Nano Lett., 2008, 8(2): 693

doi: 10.1021/nl073070d
R. M. Penner, J. Phys. Chem. B, 2002, 106: 3339

doi: 10.1021/jp013219o
S. Banerjec and S. S. Wong, Nano Lett., 2002, 2: 195

doi: 10.1021/nl015651n
R. E. Dunin-Borkowski, M. R. McCartney, M. Posfai, R. B. rankel, D.A. Bazylinski, and P. R. Buseck, Eur. J. Mineral., 2001, 13: 671

doi: 10.1127/0935-1221/2001/0013-0671
J. L. Kirschvink, M. M. Walker, and C. E. Diebel, Curr. Opin. Neurobiol., 2001, 11: 462

doi: 10.1016/S0959-4388(00)00235-X
Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, J. Phys. Chem. B, 2004, 108: 6927

doi: 10.1021/jp049038e
J. Li, X. Hong, D. Li, K. Zhao, L. Wang, H. Wang, Z. Du, J. Li, Y. Bai, and T. Li, Chem. Commun., 2004: 1740

doi: 10.1039/b405623j
J. Y. Chang, J. J. Chang, B. Lo, S. H. Tzing, and Y. C. Ling, Chem. Phys. Lett., 2003, 379: 261

doi: 10.1016/j.cplett.2003.08.047
J. Liao, Y. Zhang, W. Yu, L. Xu, C. Ge, J. Liu, and N. Gu, Colloids and SurfacesA, 2003, 223: 177

doi: 10.1016/S0927-7757(03)00156-0
J. A. Venables, Introduction to Surface and Thin Film Process, Cambridge: Cambridge UniversityPress, 2000
Z. Y. Tang, P. Podsiadlo, B. S. Shim, J. W. Lee, and A. K. Nicholas, Adv. Funct. Mater., 2008, 18: 3801

doi: 10.1002/adfm.200800691
Z. L. Wang, J. Phys. Chem. B, 2000, 104: 1153

doi: 10.1021/jp993593c
H. Colfen, Top Curr. Chem., 2007, 271: 1

doi: 10.1007/128_056
R. L. Penn and J. F. Banfield, Science, 1998, 281: 969

doi: 10.1126/science.281.5379.969
J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, and R. L. Penn, Science, 2000, 289: 751

doi: 10.1126/science.289.5480.751
Z. A. Peng and X. Peng, J. Am. Chem. Soc., 2001, 123: 1389

doi: 10.1021/ja0027766
W. T. Yao and S. H. Yu, Int. J. Nanotechnol., 2007, 4: 129

doi: 10.1504/IJNT.2007.012320
L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Nature Mater., 2003, 2: 382

doi: 10.1038/nmat902
Y. Sun, B. Mayers, T. Herricks, and Y. Xia, NanoLett., 2003, 3: 955

doi: 10.1021/nl034312m
G. A. DeVries, B. Markus, Y. Hu, A. M. Jackson, B. Long, B. T. Neltner, O. Uzun, B. H. Wunsch, and F. Stellacci, Science, 2007, 315: 358

doi: 10.1126/science.1133162
A. P. Alivisatos, J. Phys. Chem. C, 1996, 100: 13226

doi: 10.1021/jp9535506
M. Klokkenburg, A. J. Houtepen, R. Koole, J. W. J. de Folter, B. H. Ern, E. van Faassen, and D. Vanmaekelbergh, Nano Lett., 2007, 7: 2931

doi: 10.1021/nl0714684
A. Y. Sinyagin, A. Belov, Z. Tang, and N. A. Kotov, J. Phys. Chem. B, 2006, 110: 7500

doi: 10.1021/jp057105e
K. S. Cho, D. V. Talapin, W. Gaschler, and C. B. Murray, J. Am. Chem. Soc., 2005, 127: 7140

doi: 10.1021/ja050107s
Z. Tang, N. A. Kotov, and M. Giersig, Science, 2002, 297: 237

doi: 10.1126/science.1072086
S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, Phys. Rev. Lett., 2002, 89: 186802

doi: 10.1103/PhysRevLett.89.186802
F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, Science, 2001, 293: 2227

doi: 10.1126/science.1063189
P. E. Marszalek, W. J. Greenleaf, H. Li, A. F. Oberhauser, and J. M. Fernandez, PNAS, 2000, 97: 6282

doi: 10.1073/pnas.97.12.6282
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed