Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Front. Phys.   2010, Vol. 5 Issue (3): 260-265   https://doi.org/10.1007/s11467-010-0016-8
  Research articles 本期目录
Photonic crystal surface mode microcavities
Photonic crystal surface mode microcavities
Jing WANG(王静),Min YAN(严敏),Min QIU(仇旻),
Laboratory of Optics, Photonics and Quantum Electronics, Department of Microelectronics and Applied Physics, Royal Institute of Technology (KTH), Electrum 229, 16440 Kista, Sweden;
 全文: PDF(378 KB)  
Abstract:Our recent research on surface mode optical microcavities based on two-dimensional photonic crystals (PhCs) was reviewed in this paper. We presented the design, fabrication and characterization of high quality (Q) factor surface mode microcavities. Realizations of these PhCs were based on both amorphous silicon-on-insulator (SOI) structures and crystalline SOI structures.
Key wordsphotonic crystal (PhC) surface mode microcavities    three-dimensional (3-D) finitedifference time-domain (FDTD)    quality-factors
出版日期: 2010-09-05
 引用本文:   
. Photonic crystal surface mode microcavities[J]. Front. Phys. , 2010, 5(3): 260-265.
Jing WANG(王静), Min YAN(严敏), Min QIU(仇旻), . Photonic crystal surface mode microcavities. Front. Phys. , 2010, 5(3): 260-265.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-010-0016-8
https://academic.hep.com.cn/fop/CN/Y2010/V5/I3/260
E. Yablnovitch, Phys. Rev. Lett., 1987, 58: 2059

doi: 10.1103/PhysRevLett.58.2059
S. John, Phys. Rev. Lett., 1987, 58: 2486

doi: 10.1103/PhysRevLett.58.2486
J. D. Joannopoulos, R. D. Meade, and J. Winn, 1st Ed., Princeton: Princeton University Press, 1995
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature, 2003, 421: 925

doi: 10.1038/nature01371
Z. Y. Zhang and M. Qiu, Opt. Express, 2004, 12: 3988

doi: 10.1364/OPEX.12.003988
T. Uesugi, B. Song, T. Asano, and S. Noda, Opt.Express, 2006, 14: 377

doi: 10.1364/OPEX.14.000377
B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Materials, 2005, 4: 207

doi: 10.1038/nmat1320
D. Kossel, J. Opt. Soc. Am., 1969, 56: 1434
J. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, Appl. Phys. Lett., 2004, 84: 3016

doi: 10.1063/1.1715145
S. Xiao and M. Qiu, Appl. Phys. Lett., 2003, 87: 111102

doi: 10.1063/1.2043243
S. S. Xiao and M. Qiu, J. Opt. Soc. Am. B, 2007, 24(5): 1225

doi: 10.1364/JOSAB.24.001225
M. Ibanescu, S. G. Johnson, D. Roundy, U. Fink, and J. D. Joannopoulos, Opt. Lett., 2005, 30: 552

doi: 10.1364/OL.30.000552
Z. Zhang, M. Dainese, L. Wosinski, M. Swillo, U. Andersson, S. Xiao, and M. Qiu, Appl.Phys. Lett., 2007, 90: 041108

doi: 10.1063/1.2432228
C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Hans, and J. D. Joannopoulos, IEEE J. Quantum Electron., 1999, 35: 1322

doi: 10.1109/3.784592
S. Scheerlinck, J. Schrauwen, F. V. Laere, D. Taillaert, D. V. Thourhout, and R. Baets, Opt. Express, 2007, 15: 9625

doi: 10.1364/OE.15.009625
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed