Transferring a quantum state between a photon and a quantum memory is the key point for realizing a long-distance quantum communication, and is also a basic ingredient of linear optical quantum computation. In an atomic-based network, the efficient coupling between a photon and an atomic system is a prerequisite for realizing the transfer of information between them, which requires that the photon should have a comparable bandwidth with the natural bandwidth of an atom. Therefore, generating a narrow-band photon has become a very important topic in the quantum information field. One simple and efficient way is cavity-enhanced spontaneously parametric down-conversion. In this paper, we will review and introduce a series of experiments done in our group for realizing this goal. We believe these works are very useful for the research in this direction.
. Preparation of narrow-band photons for atomic-based quantum memory with a type-I phase matched periodical poled KTP crystal[J]. Frontiers of Physics in China, 2010, 5(2): 131-146.
Bao-sen SHI (史保森), Chang ZHAI (翟畅), Fu-yuan WANG (王福源), Guang-can GUO (郭光灿). Preparation of narrow-band photons for atomic-based quantum memory with a type-I phase matched periodical poled KTP crystal. Front Phys Chin, 2010, 5(2): 131-146.
C. H. Bennett and G. Brassard, in: Proceeding of theInternational Conference on Computers, Systems and Signal ProcessingIndian Institute of Science, India: Bangalore, 1984
2
C. H. Bennett and G. Brassard, in: Proceeding of the International Conference on Computers, Systems and Signal Processing Indian Institute of Science , India: Bangalore, 1984
A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, Nature, 2003, 423: 731 doi: 10.1038/nature01714
3
A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, Nature , 2003, 423: 731 doi: 10.1038/nature01714
C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, Science, 2003, 301: 196 doi: 10.1126/science.1085946
4
C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, Science , 2003, 301: 196 doi: 10.1126/science.1085946
F. Villa, A. Chiummo, E. Giacobino, and A. Bramatil., J. Opt. Soc. Am. B , 2007, 24: 576 doi: 10.1364/JOSAB.24.000576
F. Villa, A. Chiummo, E. Giacobino, and A. Bramatil., J. Opt. Soc. Am. B, 2007, 24: 576 doi: 10.1364/JOSAB.24.000576
G. R. Fayaz, M. Ghotbi, and Ebrahim-Zadeh, Appl. Phys. Lett., 2005, 86: 061110 doi: 10.1063/1.1862327
28
G. R. Fayaz, M. Ghotbi, and Ebrahim-Zadeh, Appl. Phys. Lett. , 2005, 86: 061110 doi: 10.1063/1.1862327
A. A. Lagatsky, C. T. A. Brown, W. Sibbett, S. J. Holmgren, C. Canalias, V. Pasiskevicious, F. Laurell, and E. U. Rafailov, Opt. Express, 2007, 15: 1155 doi: 10.1364/OE.15.001155
29
A. A. Lagatsky, C. T. A. Brown, W. Sibbett, S. J. Holmgren, C. Canalias, V. Pasiskevicious, F. Laurell, and E. U. Rafailov, Opt. Express , 2007, 15: 1155 doi: 10.1364/OE.15.001155
J. D. Bierlein and H. Vanherzeele, J. Opt. Soc. Am. B , 1989, 6: 622 doi: 10.1364/JOSAB.6.000622
R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Apply. Phys. B, 1983, 31: 97 doi: 10.1007/BF00702605
34
R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Apply. Phys. B , 1983, 31: 97 doi: 10.1007/BF00702605
G. Hansson, H. Karlsson, S. Wang, and F. Laurell, Appl. Opt., 2000, 39: 5058 doi: 10.1364/AO.39.005058
35
G. Hansson, H. Karlsson, S. Wang, and F. Laurell, Appl. Opt. , 2000, 39: 5058 doi: 10.1364/AO.39.005058
S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett., 2001, 37(1): 26 doi: 10.1049/el:20010009
36
S. Tanzilli, H. Reidmatten, W. Tittle, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. , 2001, 37(1): 26 doi: 10.1049/el:20010009