Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics in China  2010, Vol. 5 Issue (4): 405-413   https://doi.org/10.1007/s11467-010-0131-6
  MINI-REVIEW ARTICLE 本期目录
In situ characterization of optoelectronic nanostructures and nanodevices
In situ characterization of optoelectronic nanostructures and nanodevices
Min GAO (高旻,), Cheng-yao LI (李成垚), Wen-liang LI (李文亮), Xiao-xian ZHANG (张小娴), Lian-mao PENG (彭练矛)
Key Laboratory for the Physics and Chemistry of Nanodevices, and Department of Electronics, Peking University, Beijing 100871, China
 全文: PDF(504 KB)   HTML
Abstract

One-dimensional (1-D) semiconductor nanostructures can effectively transport electrons and photons, and are considered to be promising building blocks for future optoelectronic nanodevices. In this review, we present our recent efforts to integrate optical techniques and in situ electron microscopy for comprehensively characterizing individual 1-D optoelectronic nanostructures and nanodevices. The technical strategies and their applications in “green” emission and optical confinement in 1-D ZnO nanostructures will be introduced. We also show in situ assembly and characterization of nanostructures for optoelectronic device purposes. Using these examples, we demonstrate that the combination of optical techniques and in situ electron microscopy can be powerful for the studies of optoelectronic nanomaterials and nanodevices.

Key wordsone-dimensional (1-D) semiconductor nanostructure    optoelectronic nanodevices    in situ electron microscopy    optical confinement    deep level emission
收稿日期: 2010-05-20      出版日期: 2010-12-05
Corresponding Author(s): null,Email:mingao@pku.edu.cn   
 引用本文:   
. In situ characterization of optoelectronic nanostructures and nanodevices[J]. Frontiers of Physics in China, 2010, 5(4): 405-413.
Min GAO (高旻), Cheng-yao LI (李成垚), Wen-liang LI (李文亮), Xiao-xian ZHANG (张小娴), Lian-mao PENG (彭练矛). In situ characterization of optoelectronic nanostructures and nanodevices. Front Phys Chin, 2010, 5(4): 405-413.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-010-0131-6
https://academic.hep.com.cn/fop/CN/Y2010/V5/I4/405
1 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature , 2001, 409: 66
doi: 10.1038/35051047
2 R. Agarwal and C. M. Lieber, Appl. Phys. A , 2006, 85: 209
doi: 10.1007/s00339-006-3720-z
3 Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today , 2006, 9: 18
doi: 10.1016/S1369-7021(06)71650-9
4 R. X. Yan, D. Gargas, and P. D. Yang, Nature Photonics , 2009, 3: 569
doi: 10.1038/nphoton.2009.184
5 M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, Nano Lett. , 2008, 8: 1695
doi: 10.1021/nl080627w
6 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science , 2001, 292: 1897
doi: 10.1126/science.1060367
7 H. Kind, H. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater. , 2002, 14: 158
doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
8 M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, Science , 2004, 305: 1269
doi: 10.1126/science.1100999
9 X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature , 2003, 421: 241
doi: 10.1038/nature01353
10 H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, Appl. Phys. Lett. , 2007, 91: 181112
doi: 10.1063/1.2805073
11 R. F. Oulton, V. J. Sorger, T. Zentgralf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature , 2009, 461: 629
doi: 10.1038/nature08364
12 C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. , 2007, 7: 1003
doi: 10.1021/nl070111x
13 B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature , 2007, 449: 885
doi: 10.1038/nature06181
14 M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, Science , 2009, 324: 232
doi: 10.1126/science.1168539
15 L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature , 2003, 426: 816
doi: 10.1038/nature02193
16 A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, Nano Lett. , 2009, 9: 784
doi: 10.1021/nl803456k
17 J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, Appl. Phys. Lett. , 2009, 95: 241110
doi: 10.1063/1.3276069
18 M. Gao, W. L. Li, Y. Liu, Q. Li, Q. Chen, and L. M. Peng, Appl. Phys. Lett. , 2008, 92: 113112
doi: 10.1063/1.2898168
19 C. Y. Li, M. Gao, C. Ding, X. X. Zhang, L. H. Zhang, Q. Chen, and L. M. Peng, Nanotechnology , 2009, 20: 175703
doi: 10.1088/0957-4484/20/17/175703
20 S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science , 1998, 280:1744
doi: 10.1126/science.280.5370.1744
21 M. S. Wang, J. Y. Wang, Q. Chen, and L. M. Peng, Adv. Funct. Mater. , 2005, 15:1825
doi: 10.1002/adfm.200500215
22 L. M. Peng, Q. Chen, X. L. Liang, S. Gao, J. Y. Wang, S. Kleindiek, and S. W. Tai, MICRON , 2004, 35: 495
doi: 10.1016/j.micron.2003.12.005
23 Y. Liu, S. Wang, Z. Y. Zhang, L. M. Peng, L. Shi, and Q. Li, Appl. Phys. Lett. , 2008, 92: 033102
doi: 10.1063/1.2837060
24 Q. Chen, S. Wang, and L. M. Peng, Nanotechnology , 2006, 17: 1087
doi: 10.1088/0957-4484/17/4/041
25 X. L. Wei, Y. Liu, Q. Chen, and L. M. Peng, Nanotechnology , 2008, 19: 355304
doi: 10.1088/0957-4484/19/35/355304
26 H. Kalt, Lect. Notes Phys. , 2005, 658: 51
27 J. C. Kim, H. Rho, L. M. Smith, H. E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, Appl. Phys. Lett. , 1999, 75: 214
doi: 10.1063/1.124323
28 A. Gustafsson, M. E. Pistol, L. Montelius, and L. J. Samuelson, Appl. Phys. , 1998, 84: 1715
29 D. Liu, A. L. Pan, G. Z. Xu, Y. Q. Bai, X. Zhu, and B. S. Zou, Opt. Rev. , 2006, 13: 235
doi: 10.1007/s10043-006-0235-y
30 S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, Adv. Mater. , 1999, 11: 1243
doi: 10.1002/(SICI)1521-4095(199910)11:15<1243::AID-ADMA1243>3.0.CO;2-2
31 J. B. Baxter, F. Wu, and E. S. Aydil, Appl. Phys. Lett. , 2003, 83: 3797
doi: 10.1063/1.1624467
32 X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Adv. Mater. , 2009, 21: 4937
doi: 10.1002/adma.200900956
33 P. M. Petroff and D. W. Lang, Appl. Phys. Lett. , 1977, 31: 60
doi: 10.1063/1.89590
34 B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, New York: Springer-Verlag, 1990: 116
35 Y. Ohno and S. Takeda, Rev. Sci. Instrum. , 1995, 66: 4866
doi: 10.1063/1.1146166
36 L. J. Brillson, J. Vac. Sci. Technol. B , 2001, 19: 1762
doi: 10.1116/1.1394728
37 M. Gao, S. T. Bradley, Y. Cao, D. Jena D, Y. Lin Y, S. A. Ringel, J. Hwang, W. J. Schaff, and L. J. Brillson, J. Appl. Phys. , 2006, 100: 103512
doi: 10.1063/1.2382622
38 A. B. Djuri?i? and Y. H. Leung, Small , 2006, 2: 944
doi: 10.1002/smll.200600134
39 K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. , 1996, 79: 7983
doi: 10.1063/1.362349
40 A. B. Djuri?i?Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, Nanotechnology , 2007, 18: 095702
41 C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. I. Wen, and W. F. Pong, Appl. Phys. Lett. , 2006, 88: 241905
doi: 10.1063/1.2211047
42 P. C. Chang, C. J. Cheien, D. Stichtenoth, C. Ronning, and J. G. Lu, Appl. Phys. Lett. , 2007, 90: 113101
doi: 10.1063/1.2712507
43 D. C. Look, G. C. Farlow, S. Limpijumnong, S. B. Zhang, and K. Nordlund, Phys. Rev. Lett. , 2005, 95: 225502
doi: 10.1103/PhysRevLett.95.225502
44 A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. , 2005, 87: 122102
doi: 10.1063/1.2053360
45 M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, and P. Avouris, Phys. Rev. Lett. , 2004, 93: 076803
doi: 10.1103/PhysRevLett.93.076803
46 J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, Science , 2001, 293: 1455
doi: 10.1126/science.1062340
47 L. Wischmeier, T. Voss, S. B?rner, and W. Schade, Appl. Phys. A , 2006, 84: 111
doi: 10.1007/s00339-006-3589-x
48 F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Liber, Nano Lett. , 2005, 5: 2287
doi: 10.1021/nl051689e
49 C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett. , 2004, 4: 1981
doi: 10.1021/nl048739k
50 L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, Phys. Rev. Lett. , 2006, 97: 147401
doi: 10.1103/PhysRevLett.97.147401
51 S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, Nano Lett. , 2008, 8: 119
doi: 10.1021/nl0721867
52 J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, J. Phys. Chem. B , 2003, 107: 8816
doi: 10.1021/jp034482n
53 T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, Nano Lett. , 2007, 7: 3675
doi: 10.1021/nl071958w
54 R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen, and G. G. Qin, Nano Lett ., 2009, 9: 2697
doi: 10.1021/nl901190v
55 W. L. Li, M. Gao, X. X. Zhang, D. F. Liu, L. M. Peng, and S. S. Xie, Appl. Phys. Lett. , 2009, 95: 173109
doi: 10.1063/1.3257366
56 W. L. Li, M. Gao, R. Cheng, X. X. Zhang, S. S. Xie, and L. M. Peng, Appl. Phys. Lett. , 2008, 93: 023117
doi: 10.1063/1.2957982
57 X. X. Zhang, D. F. Liu, L. H. Zhang, W. L. Li, M. Gao, W. J. Ma, Y. Ren, Q. S. Zeng, Z. Q. Niu, W. Y. Zhou, and S. S. Xie, J. Mater. Chem. , 2009, 19: 962
doi: 10.1039/b815518f
58 J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, J. Phys. Chem. B , 2003, 107: 8816
doi: 10.1021/jp034482n
59 J. Bao, M. A. Zimmler, and F. Capasso, Nano Lett. , 2006, 6: 1719
doi: 10.1021/nl061080t
60 Y. Yu, C. H. Jin, R. H. Wang, Q. Chen, and L. M. Peng, J. Phys. Chem. B , 2005, 109: 18772
doi: 10.1021/jp051294j
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed