Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics in China  2010, Vol. 5 Issue (4): 369-379   https://doi.org/10.1007/s11467-010-0133-4
  REVIEW ARTICLE 本期目录
First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions
First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions
Haiping LIN (林海平)1(), Janosch M. C. RAUBA2, Kristian S. THYGESEN2, Karsten W. JACOBSEN2, Michelle Y. SIMMONS3, Werner A. HOFER1()
1. Surface Science Research Centre, The University of Liverpool, Liverpool, L69 3BX, UK; 2. Center for Atomic-scale Materials Design, Technical University of Denmark, DK-2800 Lyngby, Denmark; 3. Centre of Quantum Computer Technology, School of Physics, The University of New South Wales, Sydney NSW 2052, Australia
 全文: PDF(517 KB)   HTML
Abstract

The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy (STM) techniques. The theoretical treatment of the STM operation has traditionally been based on the Bardeen and Tersoff–Hamann methods which take as input the single-particle wave functions and eigenvalues obtained from finite cluster or slabs models of the surface-tip interface. Here, we present a novel STM simulation scheme based on non-equilibrium Green’s functions (NEGF) and Wannier functions which is both accurate and very efficient. The main novelty of the scheme compared to the Bardeen and Tersoff–Hamann approaches is that the coupling to the infinite (macroscopic) electrodes is taken into account. As an illustrating example we apply the NEGF-STM method to the Si(001)-(2×1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff–Hamann methods.

Key wordsSTM simulation    non-equilibrium Green’s function    Wannier function
收稿日期: 2010-06-09      出版日期: 2010-12-05
Corresponding Author(s): null,Email:Haiping.Lin@liverpool.ac.uk; HOFER Werner A.,Email:whofer@liverpool.ac.uk   
 引用本文:   
. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions[J]. Frontiers of Physics in China, 2010, 5(4): 369-379.
Haiping LIN (林海平), Janosch M. C. RAUBA, Kristian S. THYGESEN, Karsten W. JACOBSEN, Michelle Y. SIMMONS, Werner A. HOFER. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green’s functions. Front Phys Chin, 2010, 5(4): 369-379.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-010-0133-4
https://academic.hep.com.cn/fop/CN/Y2010/V5/I4/369
1 G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. , 1982, 49: 57
doi: 10.1103/PhysRevLett.49.57
2 G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. , 1983, 50: 120
doi: 10.1103/PhysRevLett.50.120
3 J. A. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, Science , 2002, 298: 1381
doi: 10.1126/science.1076768
4 C. Joachim, J. K. Gimzewski, and A. Aviram, Nature , 2000, 408: 541
doi: 10.1038/35046000
5 H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature , 2000, 403: 512
doi: 10.1038/35000508
6 S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett. , 2000, 85: 2777
doi: 10.1103/PhysRevLett.85.2777
7 S.-W. Hla and K.-H. Rieder, Ann. Rev. Phys. Chem. , 2003, 54: 307
doi: 10.1146/annurev.physchem.54.011002.103852
8 M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen, M. A. Eriksson, and M. Y. Simmons, Nature Nanotechnology , 2010, 5: 502
doi: 10.1038/nnano.2010.95
9 J. Tersoff and D. R. Hamann, Phys. Rev. B , 1981, 31: 805
doi: 10.1103/PhysRevB.31.805
10 J. Tersoff and D. R. Hamann, Phys. Rev. Lett. , 1985, 50: 1988
11 W. A. Hofer, G. Ritz, W. Hebenstreit, M. Schmid, P. Varga, J. Redinger, and R. Podloucky, Surf. Sci. Lett. , 1998, 405: L514
doi: 10.1016/S0039-6028(98)00140-X
12 J. Bardeen, Phys. Rev. Lett. , 1961, 6: 57
doi: 10.1103/PhysRevLett.6.57
13 W. A. Hofer and J. Redinger, Surf. Sci. , 2000, 447: 51
doi: 10.1016/S0039-6028(99)01053-5
14 K. S. Thygesen and K. W. Jacobsen, Chem. Phys. , 2005, 319: 111
doi: 10.1016/j.chemphys.2005.05.032
15 W. A. Hofer, A. S. Foster, and A. L. Shluger, Rev. Mod. Phys. , 2003, 75: 1287
doi: 10.1103/RevModPhys.75.1287
16 Z. T. Deng, H. Lin, W. Ji, L. Gao, X. Lin, Z. H. Cheng, X. B. He, J. L. Lu, D. X. Shi, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett. , 2006, 96: 156102
doi: 10.1103/PhysRevLett.96.156102
17 A. Calzolari, N. Marzari, I. Souza, and M. B. Nardelli, Phys. Rev. B , 2004, 69: 035108
doi: 10.1103/PhysRevB.69.035108
18 G. H. Wannier, Phys. Rev. , 1937, 52: 191
doi: 10.1103/PhysRev.52.191
19 N. Marzari and D. Vanderbilt, Phys. Rev. B , 1997, 56: 12847
doi: 10.1103/PhysRevB.56.12847
20 K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. Lett. , 2005, 94: 026405
doi: 10.1103/PhysRevLett.94.026405
21 K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B , 2005, 72: 125119
doi: 10.1103/PhysRevB.72.125119
22 K. S. Thygesen, Phys. Rev. B , 2006, 73: 035309
doi: 10.1103/PhysRevB.73.035309
23 C. J. Chen, Introduction to Scanning Tunnelling Microscopy, New York: Oxford University Press, 1993
24 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
25 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B , 1985, 31: 6207
doi: 10.1103/PhysRevB.31.6207
26 K. Palotás and W. A. Hofer, J. Phys.: Condens. Matter , 2005, 17: 2705
doi: 10.1088/0953-8984/17/17/019
27 A. S. Foster and W. A. Hofer, Scanning Probe Microscopy, Spring Series in NanoScience and Technology, Springer , 2006
28 W. A. Hofer and A. J. Fisher, Phys. Rev. Lett. , 2003, 91: 036803
doi: 10.1103/PhysRevLett.91.036803
29 W. A. Hofer and A. Garcia-Lekue, Phys. Rev. B , 2005, 71: 085401
doi: 10.1103/PhysRevB.71.085401
30 W. A. Hofer, A. Garcia-Lekue, and H. Brune, Chem. Phys. Lett. , 2004, 397: 354
doi: 10.1016/j.cplett.2004.08.110
31 C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Journal of Physics C , 1971, 4: 916
32 T. E. Feuchtwang, Phys. Rev. B , 1974, B10: 4135
doi: 10.1103/PhysRevB.10.4135
33 T. E. Feuchtwang, Phys. Rev. B , 1974, 10: 4121
doi: 10.1103/PhysRevB.10.4121
34 T. E. Feuchtwang, Phys. Rev. B , 1976, 13: 517
doi: 10.1103/PhysRevB.13.517
35 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. , 1992, 68: 2512
doi: 10.1103/PhysRevLett.68.2512
36 H. Hauge and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid-State Physics, Springer , 1996
37 F. Flores, F. Guinea, C. Tejedor, and E. Louis, Phys. Rev. B , 1983, 28: 4397
doi: 10.1103/PhysRevB.28.4397
38 K. Flensberg and H. Bruus, Many-Body Quantum Theory in Condensed Matter Physics, Chapter 8, New York: Oxford University Press, 2004
39 S. Garcia-Gil, A. Garcia, N. Lorente, and P. Ordejon, Phys. Rev. B , 2009, 79: 075441
doi: 10.1103/PhysRevB.79.075441
40 L. Liu, J. Yu, and J. W. Lyding, Appl. Phys. Lett. , 2001, 78: 386
doi: 10.1063/1.1339260
41 L. Liu, J. Yu, and J. W. Lyding, IEEE Trans. Nanotechnol. , 2002, 1: 176
doi: 10.1109/TNANO.2002.807391
42 G. W. Brown, H. Grube, and M. E. Hawley, Phys. Rev. B , 2004, 70: 121301
doi: 10.1103/PhysRevB.70.121301
43 L. Oberbeck, N. J. Curson, T. Hallam, M. Y. Simmons, and R. G. Clark, Thin Solid Films , 2004, 464: 23
doi: 10.1016/j.tsf.2004.05.118
44 J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, Appl. Phys. Lett. , 1994, 64: 2010
doi: 10.1063/1.111722
45 S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueβ, T. Hallam, L. Oberbeck, and R. G. Clark, Phys. Rev. Lett. , 2003, 91: 136104
doi: 10.1103/PhysRevLett.91.136104
46 F. J. Ruess, L. Oberbeck, M. Y. Simmons, K. E. J. Goh, A. R. Hamilton, T. Hallam, S. R. Schofield, N. J. Curson, and R. G. Clark, Nano Lett. , 2004, 4: 1969
doi: 10.1021/nl048808v
47 A. Fuhrer, M. Fchsle, T. C. G. Reusch, B. Weber, and M. Y. Simmons, Nano Lett. , 2009, 9: 707
doi: 10.1021/nl803196f
48 J. L. O’Brien, S. R. Schofield, M. Y. Simmons, R. G. Clark, A. S. Dzurak, N. J. Curson, B. E. Kane, N. S. McAlpine, M. E. Hawley, and G. W. Brown, Phys. Rev. B , 2001, 64: 161401(R)
doi: 10.1103/PhysRevB.64.161401
49 G. Kresse and J. Hafner, Phys. Rev. B , 1993, 47: 558
doi: 10.1103/PhysRevB.47.558
50 G. Kresse and J. Hafner, Phys. Rev. B , 1994, 49: 14251
doi: 10.1103/PhysRevB.49.14251
51 G. Kresse and J. Furthmüller, Comput. Mater. Sci. , 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
52 G. Kresse and J. Furthmüller, Phys. Rev. B , 1996, 54: 11169
doi: 10.1103/PhysRevB.54.11169
53 J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B , 2005, 71: 035109
doi: 10.1103/PhysRevB.71.035109
54 J. Enkovaara, , J. Phys.: Condens. Matter (in press)
55 W. A. Hofer, Progr. Surf. Sci. , 2003, 71: 147
doi: 10.1016/S0079-6816(03)00005-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed