Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2012, Vol. 7 Issue (2): 239-243   https://doi.org/10.1007/s11467-011-0158-3
  RESEARCH ARTICLE 本期目录
Diffraction of entangled photon pairs by ultrasonic waves
Diffraction of entangled photon pairs by ultrasonic waves
Lü-bi Deng (邓履璧,)
Department of Physics, Southeast University, Nanjing 210096, China
 全文: PDF(238 KB)   HTML
Abstract

In this paper, we have presented and established a new theoretical formulation of photon optics based on photon path and Feynman path integral idea. We have used Feynman path integral approach to discuss Fraunhofer, Fresnel diffraction of single photon and entangled photon pairs by ultrasonic wave and obtained the following results: i) quantum state and probability distribution of single photon and entangled photon pairs by Fraunhofer and Fresnel ultrasonic diffraction, ii) oblique incidence Raman–Nath and Bragg diffraction conditions, iii) total correlation state and its probability distribution. Our calculation results are in agreement with the experiment results. Comparing one-photon and two-photon diffraction effects by ultrasonic waves, we have found that two-photon diffraction by ultrasonic waves is also a sub-wavelength diffraction.

Key wordsatom optics    diffraction and interference    path integral
收稿日期: 2010-11-03      出版日期: 2012-04-01
Corresponding Author(s): Lü-bi Deng (邓履璧),Email:lbdeng@seu.edu.cn   
 引用本文:   
. Diffraction of entangled photon pairs by ultrasonic waves[J]. Frontiers of Physics, 2012, 7(2): 239-243.
Lü-bi Deng (邓履璧). Diffraction of entangled photon pairs by ultrasonic waves. Front. Phys. , 2012, 7(2): 239-243.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0158-3
https://academic.hep.com.cn/fop/CN/Y2012/V7/I2/239
1 L. Brillouin, Ann. De Phyique , 1921, 17: 103
2 P. Debye andF. W. Sears, Proc. Natl. Acad. Sci. , 1932, 18: 409
doi: 10.1073/pnas.18.6.409
3 E. David, Z. Phys. , 1937, 38: 587
4 S. Rytov, Diffraction de la Lumiére parles Ultrasons, Paris: Hermann, 1938
5 G. W. Willard, J. Acoust. Soc. Am. , 1949, 21: 101
doi: 10.1121/1.1906472
6 C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A , 1935, 2: 406
7 C. V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A , 1936, 3: 75–119
8 R. R. Aggarwal, Proc. Ind. Acad. Sci. A , 1950, 31: 417
9 A. B. Bhatia and W. J. Noble, Proc. Roy. Soc. A , 1953, 220: 356
doi: 10.1098/rspa.1953.0192
10 A. B. Bhatia and W. J. Noble, Proc. Roy. Soc. A , 1953, 220: 369
doi: 10.1098/rspa.1953.0193
11 A. Yariv, IEEE J. QuantumElectron. , 1965, 1: 28
doi: 10.1109/JQE.1965.1072182
12 M. Born and E. Wolf, Principles of Optics , Cambridge: Cambridge University Press,1999
13 A. Yariv, Optical Electronics , 3d Ed., New York: CBS College Publishing, 1985
14 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals , New York: McGraw-Hill, 1965
15 L. B. Deng, Front. Phys. China , 2006, 1(1): 47
doi: 10.1007/s11467-005-0015-3
16 L. B. Deng, Front. Phys. China , 2008, 3(1): 13
doi: 10.1007/s11467-008-0003-5
17 E. J. S. Fonseca, C. H. Monken, and S. Padua, Phys. Rev. Lett. , 1999, 82: 2868
doi: 10.1103/PhysRevLett.82.2868
18 H. Z. Cummins and N. Knable, Proc . IEEE, 1963, 51: 1246
doi: 10.1109/PROC.1963.2510
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed