Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (3): 313-319   https://doi.org/10.1007/s11467-011-0162-7
  RESEARCH ARTICLE 本期目录
Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons
Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons
Guang-cun SHAN (单光存)1,2, Shu-ying BAO (包术颖)3(), Kang ZHANG (张康)4, Wei HUANG (黄维)1
1. Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2. Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China; 3. Department of Physics, Fudan University, Shanghai 200433, China; 4. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
 全文: PDF(277 KB)   HTML
Abstract

Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics technology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter–nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to understanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices.

Key wordsquantum plasmonics    quantum optics    metallic nanowire    surface plasmon (SP)    quantum dot
收稿日期: 2010-11-15      出版日期: 2011-09-05
Corresponding Author(s): BAO (包术颖) Shu-ying,Email:bao.shuying@gmail.com   
 引用本文:   
. Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Frontiers of Physics, 2011, 6(3): 313-319.
Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons. Front. Phys. , 2011, 6(3): 313-319.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0162-7
https://academic.hep.com.cn/fop/CN/Y2011/V6/I3/313
1 S. Nie and S. R. Emory, Science , 1997, 275: 1102
doi: 10.1126/science.275.5303.1102
2 K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. , 1997, 78: 1667
doi: 10.1103/PhysRevLett.78.1667
3 H. X. Xu, J. Aizpurua, M. K?ll, and P. Apell, Phys. Rev. E , 2000, 62: 4318
doi: 10.1103/PhysRevE.62.4318
4 H. X. Xu, X. H. Wang, M. Persson, H. Q. Xu, M. K?ll, and P. Johansson, Phys. Rev. Lett. , 2004, 93: 243002
doi: 10.1103/PhysRevLett.93.243002
5 I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. , 2005, 94: 057401
doi: 10.1103/PhysRevLett.94.057401
6 G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, Nature Methods , 2007, 4: 1015
doi: 10.1038/nmeth1133
7 R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, L. Dai, G. Bartal, and X. Zhang, Nature , 2009, 461: 629
doi: 10.1038/nature08364
8 G. C. Shan and W. Huang, J. Nanosci. Nanotechnol. , 2009, 9: 1176
doi: 10.1166/jnn.2009.C114
9 A. K. Ekert, Phys. Rev. Lett. , 1991, 67: 661
doi: 10.1103/PhysRevLett.67.661
10 R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. , 1992, 68: 1132
doi: 10.1103/PhysRevLett.68.1132
11 D. E. Chang, A. S. S?rensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. , 2006, 97: 053002
doi: 10.1103/PhysRevLett.97.053002
12 D. E. Chang, A. S. S?rensen, E. A. Demler, and M. D. Lukin, Nat. Phys. , 2007, 3: 807
doi: 10.1038/nphys708
13 L. Childress, A. S. S?rensen, and M. D. Lukin, Phys. Rev. A , 2004, 69: 042302
doi: 10.1103/PhysRevA.69.042302
14 A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature , 2007, 450: 402
doi: 10.1038/nature06230
15 Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. A , 2009, 79: 033815
doi: 10.1103/PhysRevA.79.033815
16 D. Dzsotjan, A. S. Sorensen, and M. Fleischhauer, Phys. Rev. B , 2010, 82: 075427
doi: 10.1103/PhysRevB.82.075427
17 M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1999
18 H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
19 J. M. Wylie and J. E. Sipe, Phys. Rev. A , 1984, 30: 1185
doi: 10.1103/PhysRevA.30.1185
20 V. V. Klimov and M. Ducloy, Phys. Rev. A , 2004, 69: 013812
doi: 10.1103/PhysRevA.69.013812
21 P. B. Johnson and R. W. Christy, Phys. Rev. B , 1972, 6: 4370
doi: 10.1103/PhysRevB.6.4370
22 J. D. Jackson, Classical Electrodynamics, New York: Wiley, 1999
23 G. C. Shan and W. Huang, Front. Phys. China , 2006, 1(4): 405
doi: 10.1007/s11467-006-0053-5
24 S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. , 2006, 97: 017402
doi: 10.1103/PhysRevLett.97.017402
25 D. E. Chang, A. S. S?rensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. B , 2007, 76: 035420
doi: 10.1103/PhysRevB.76.035420
26 H. Wei, D. Ratchford, X. Q. Li, H. X. Xu, and C. K. Shih, Nano Lett. , 2009, 9: 4168
doi: 10.1021/nl9023897
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed