Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (2): 142-150   https://doi.org/10.1007/s11467-011-0171-6
  REVIEW ARTICLE 本期目录
Challenges in hydrogen adsorptions: from physisorption to chemisorption
Challenges in hydrogen adsorptions: from physisorption to chemisorption
Feng DING1(), Boris I. YAKOBSON2
1. Institute of Textile and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; 2. Department of Material Science and Mechanical Engineering, Department of Chemistry, Rice University, Houston, TX 77005, USA
 全文: PDF(497 KB)   HTML
Abstract

In this short review, we will briefly discuss the story of hydrogen storage, its impact on clean energy application, especially the challenges of using hydrogen adsorption for onboard application. After a short comparison of the main methods of hydrogen storage (high pressure tank, metal hydride and adsorption), we will focus our discussion on adsorption of hydrogen in graphitic carbon based large surface area adsorbents including carbon nanotubes, graphene and metal organic frameworks. The mechanisms, advantages, disadvantages and recent progresses will be discussed and reviewed for physisorption, metal-assisted storage and chemisorption. In the last section, we will discuss hydrogen spillover chemisorption in detail for the mechanism, status, challenges and perspectives. We hope to present a clear picture of the present technologies, challenges and the perspectives of hydrogen storage for the future studies.

Key wordshydrogen storage    physisorption    chemisorption    spillover
收稿日期: 2010-03-25      出版日期: 2011-06-05
Corresponding Author(s): DING Feng,Email:tcfding@inet.polyu.edu.hk   
 引用本文:   
. Challenges in hydrogen adsorptions: from physisorption to chemisorption[J]. Frontiers of Physics, 2011, 6(2): 142-150.
Feng DING, Boris I. YAKOBSON. Challenges in hydrogen adsorptions: from physisorption to chemisorption. Front. Phys. , 2011, 6(2): 142-150.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0171-6
https://academic.hep.com.cn/fop/CN/Y2011/V6/I2/142
1 J. Cieslik, P. Kula, and R. Sato, J. Alloys Comp. , 2011, 509(9): 3972
2 S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. C , 2008, 112(14): 5258
3 S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. C , 2007, 111(4): 1584
4 K. M. Thomas, Dalton Trans. , 2009, (9): 1487
5 B. Xiao, P. S. Wheatley, X. B. Zhao, A. J. Fletcher, S. Fox, A. G. Rossi, I. L. Megson, S. Bordiga, L. Regli, K. M. Thomas, and R. E. Morris, J. Am. Chem. Soc. , 2007, 129(5): 1203
6 S. C. Wang, L. Senbetu, and C. Woo, J. Low Temp. Phys. , 1980, 41(5-6): 611
7 L. F. Wang and R. T. Yang, Catal. Rev. Sci. Eng. , 2010, 52(4): 411
8 M. M. Biswas and T. Cagin, J. Phys. Chem. B , 2010, 114(43): 13752
9 A. D. Leonard, J. L. Hudson, H. Fan, R. Booker, L. J. Simpson, K. J. O’Neill, P. A. Parilla, M. J. Heben, M. Pasquali, C. Kittrell, and J. M. Tour, J. Am. Chem. Soc. , 2009, 131(2): 723
10 M. Dinca and J. R. Long, Angew. Chem. Int. Ed. , 2008, 47(36): 6766
11 M. Dinca, A. F. Yu, and J. R. Long, J. Am. Chem. Soc. , 2006, 128(27): 8904
12 L. J. Murray, M. Dincǎ, and J. R. Long, Chem. Soc. Rev. , 2009, 38(5): 1294
13 J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed. , 2005, 44(30): 4670
14 Y. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94: 145554
15 Y. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94: 145554
16 T. Yildirim and S. Ciraci, Phys. Rev. Lett. , 2005, 94(17): 175501
17 T. Yildirim, J. í?iguez, and S. Ciraci, Phys. Rev. B , 2005, 72(15): 153403
18 M. Yoon, S. Y. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Y. Zhang, Phys. Rev. Lett. , 2008, 100(20): 206806
19 M. Yoon, S. Y. Yang, E. Wang, and Z. Y. Zhang, Nano Lett. , 2007, 7(9): 2578
20 J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen, Proc. Natl. Acad. Sci. USA , 2010, 107(7): 2801
21 Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc. , 2006, 128(30): 9741
22 Q. Sun, Q.Wang, and P. Jena, Appl. Phys. Lett. , 2009, 94(1): 013111
23 M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett. , 2009, 9(5): 1944
24 M. H. Shang, S. H. Wei, and Y. J. Zhu, J. Phys. Chem. C , 2009, 113(35): 15507
25 N. S. Venkataramanan, M. Khazaei, R. Sahara, H. Mizuseki, and Y. Kawazoe, Chem. Phys. , 2009, 359(1-3): 173
26 X. J. Wu, J. L. Yang, and X. C. Zeng, J. Chem. Phys. , 2006, 125(4): 044704
27 H. L. Park and Y. C. Chung, Comput. Mater. Sci. , 2010, 49(4): S297
28 L. Wang, K. Lee, Y. Y. Sun, M. Lucking, Z. F. Chen, J. J. Zhao, and S. B. B. Zhang, ACS Nano , 2009, 3(10): 2995
29 Y. Wang, C. X. Guo, X. Wang, C. Guan, H. B. Yang, K. A. Wang, and C. M. Li, Energy & Environ. Sci. , 2011, 4(1): 195
30 S. Iijima, Nature , 1991, 354(6348): 56
31 S. Iijima and T. Ichihashi, Nature , 1993, 363(6430): 603
32 A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. Heben, Nature , 1997, 386(6623): 377
33 C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Science , 1999, 286(5442): 1127
34 M. K. Kostov, H. Cheng, A. C. Cooper, and G. P. Pez, Phys. Rev. Lett. , 2002, 89(14): 146105
35 H. Cheng, A. C. Cooper, and G. P. Pez, J. Chem. Phys. , 2004, 120(19): 9427, author reply 9430
36 J. Miyamoto, Y. Hattori, D. Noguchi, H. Tanaka, T. Ohba, S. Utsumi, H. Kanoh, Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, and K. Kaneko, J. Am. Chem. Soc. , 2006, 128(39): 12636
37 V. V. Simonyan, P. Diep, and J. K. Johnson, J. Chem. Phys. , 1999, 111(21): 9778
38 Q.Wang and J. K. Johnson, J. Phys. Chem. B , 1999, 103(23): 4809
39 F. Ding, Y. Lin, P. O. Krasnov, and B. I. Yakobson, J. Chem. Phys. , 2007, 127(16): 164703
40 H. Cheng, G. P. Pez, and A. C. Cooper, J. Am. Chem. Soc. , 2001, 123(24): 5845
41 H. M. Cheng, Q. H. Yang, and C. Liu, Carbon , 2001, 39(10): 1447
42 R. G. Ding, G. Q. Lu, Z. F. Yan, and M. A. Wilson, J. Nanosci. Nanotechnol. , 2001, 1(1): 7
43 Y. P. Zhou, K. Feng, Y. Sun, and L. Zhou, Progress in Chemistry , 2003, 15(5): 345
44 J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, J. Chem. Phys. , 2003, 119(4): 2376
45 H.M. Cheng and M. S. Dresselhaus, Science , 2000, 287(5453): 593
46 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, , Gaussian 03, Revision C. 02, Wallingford: Gaussian, Inc. , 2004
47 Y. H. Kim, Y. F. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2006, 96(1): 016102
48 G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, and H. J. Wasserman, J. Am. Chem. Soc. , 1984, 106(2): 451
49 G. Kubas, Acc. Chem. Res. , 1988, 21: 120
50 E. Durgun, S. Ciraci, W. Zhou, and T. Yildirim, Phys. Rev. Lett. , 2006, 97(22): 226102
51 W. H. Shin, S. H. Yang, I. I. I. WAG, and J. K. Kanga, Appl. Phys. Lett. , 2006, 88: 05311
52 S. S. Han and A. William, J. Am. Chem. Soc. , 2007, 129(27): 8422
54 P. O. Krasnov, F. Ding, A. K. Singh, and B. I. Yakobson, J. Phys. Chem. C , 2007, 111(49): 17977
55 Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. , 2005, 127(42): 14582
56 Y. Lin, F. Ding, and B. I. Yakobson, Phys. Rev. B , 2008, 78(4): 041402 (R)
57 S. J. Teichner, Appl. Catal. , 1990, 62(1): 1
58 L. F. Wang and R. T. Yang, Energy & Environ. Sci. , 2008, 1(2): 268
59 Y. A. Zolotarev, A. K. Dadayan, Y. A. Borisov, and V. S. Kozik, Chem. Rev. , 2010, 110(9): 5425
60 Y. Li and R. T. Yang, J. Am. Chem. Soc. , 2006, 128(3): 726
61 G. F. Wu, J. L. Wang, X. C. Zeng, H. Hu, and F. Ding, J. Phys. Chem. C , 2010, 114(27): 11753
62 J. O. Sofo, A. Chaudhari, and G. D. Barber, Phys. Rev. B , 2007, 75(15): 153401s
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed