Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (2): 214-219   https://doi.org/10.1007/s11467-011-0172-5
  RESEARCH ARTICLE 本期目录
Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles
Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles
Fen LI1,2,3, Ji-jun ZHAO1,2(), Li-xian SUN3()
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China; 2. College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China; 3. Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian 116023, China
 全文: PDF(198 KB)   HTML
Abstract

The hydrogen storage behavior of the TiCr2 and ZrCr2 alloys substituted with the third components (Zr, V, Fe, Ni) have been studied using first-principles calculations. The change of the hydrogen absorption energies caused by metal doping is arising from the charge transfer among the doped alloys interior. Zr and V atoms devoted abundant electrons, leading to a great enhancement of the H absorption energy, while Fe and Ni atoms always accepted electrons, yielding a remarkable decrease of the H absorption energy. The hydrogen diffusion energy barrier is closely correlated with the geometry effect rather than the electronic structure.

Key wordsalloy    hydrogen storage    doping    first-principles
收稿日期: 2011-01-23      出版日期: 2011-06-05
Corresponding Author(s): ZHAO Ji-jun,Email:zhaojj@dlut.edu.cn; SUN Li-xian,Email:lxsun@dicp.ac.cn   
 引用本文:   
. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles[J]. Frontiers of Physics, 2011, 6(2): 214-219.
Fen LI, Ji-jun ZHAO, Li-xian SUN. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles. Front. Phys. , 2011, 6(2): 214-219.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0172-5
https://academic.hep.com.cn/fop/CN/Y2011/V6/I2/214
1 Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94(15): 155504
doi: 10.1103/PhysRevLett.94.155504
2 M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett. , 2009, 9(5): 1944
doi: 10.1021/nl900116q
3 J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed. , 2005, 44(30): 4670
doi: 10.1002/anie.200462786
4 D. J. Collins and H. C. Zhou, J. Mater. Chem. , 2007, 17(30): 3154
doi: 10.1039/b702858j
5 L. J. Murray, M. Dinc?, and J. R. Long, Chem. Soc. Rev. , 2009, 38(5): 1294
doi: 10.1039/b802256a
6 S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc. , 2008, 130(35): 11580
doi: 10.1021/ja803247y
7 H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc. , 2009, 131(25): 8875
doi: 10.1021/ja9015765
8 L. Zaluski and A. Zaluska, J. Alloys Comp. , 1997, 253(1-2): 70
9 L. Schlapbach and A. Züttel, Nature , 2001, 414(6861): 353
doi: 10.1038/35104634
10 D. Ohlendorf and H. E. Flotow, J. Chem. Phys. , 1980, 73(6): 2937
doi: 10.1063/1.440467
11 S. Srivastava and O. N. Srivastava, J. Alloys Comp. , 1999, 290: 250
12 K. Tatsumi, I. Tanaka, H. Inui, K. Tanaka, M. Yamaguchi, and H. Adachi, Phys. Rew. B , 2001, 64(18): 184105
doi: 10.1103/PhysRevB.64.184105
13 J. H. Sanders and B. J. Tatarchuk, J. Less Common Met. , 1989, 147(2): 277
doi: 10.1016/0022-5088(89)90201-4
14 J. H. Woo and K. S. Lee, J. Electrochem. Soc. , 1999, 146(3): 819
doi: 10.1149/1.1391687
15 Y. H. Zhang, X. P. Dong, D. L. Zhao, S. H. Guo, Y. Qi, and X. L. Wang, Trans. Nonferrous Met. Soc. , 2008, 18(4): 857
doi: 10.1016/S1003-6326(08)60149-1
16 Y. H. Xu, C. P. Chen, X. L. Wang, Y. Q. Lei, and Q. D. Wang, J. Alloys Comp. , 2002, 337: 214
17 N. Mani and S. Ramaprabhu, Int. J. Hydrogen Energy , 2005, 30(1): 53
doi: 10.1016/j.ijhydene.2004.03.027
18 C. Iwakura, H. Kasuga, I. Kim, H. Inoue, and M. Matsuoka, Electrochim. Acta , 1996, 41: 2694
19 Y. F. Liu, H. G. Pan, M. X. Gao, Y. F. Zhu, and Y. Q. Lei, J. Alloys Comp. , 2004, 365: 246
20 S. Vivet, J. M. Joubert, B. Knosp, P. Ochin, and A. P. Guégan, J. Alloys Comp. , 2008, 465: 517
21 Y. H. Zhanga, D. L. Zhao, B. W. Li, X. L. Zhao, Z. W. Wu, and X. L. Wang, Int. J. Hydrogen Energy , 2008, 33: 1868
doi: 10.1016/j.ijhydene.2008.01.016
22 S. L. Li, P. Wang, W. Chena, G. Luo, D. M. Chen, and K. Yang, J. Alloys Comp. , 2009, 485: 867
23 Y. Li, D. Han, S. M. Han, X. L. Zhu, L. Hu, Z. Zhang, and Y. W. Liu, Int. J. Hydrogen Energy , 2009, 34(3): 1399
doi: 10.1016/j.ijhydene.2008.11.049
24 L. Zaluski, A. Zaluska, P. Tessier, J. O. Str?m-Olsen, and R. J. Schulz, Mater. Sci. , 1996, 31: 695
doi: 10.1007/BF00367887
25 H. Miyamura, M. Takada, K. Hirose, and S. Kikuchi, J. Alloys Comp. , 2003, 356-357: 755
26 T. Kondo, K. Shindo, and Y. Sakurai, J. Alloys Comp. , 2005, 404-406: 511
27 L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, and I. Okonsk, Renew. Energy , 2008, 33(2): 201
doi: 10.1016/j.renene.2007.05.006
28 D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu, J. Alloys Comp. , 2009, 478: 96
29 Y. H. Zhang, H. P. Ren, S. H. Guo, Z. G. Pang, Y. Qi, and X. L. Wang, J. Alloys Comp. , 2009, 480: 750
30 Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng, and A. B. Yu, J. Alloys Comp. , 2004, 381(1-2): 234
31 X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy , 2000, 25(7): 649
doi: 10.1016/S0360-3199(99)00080-4
32 J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy , 2000, 25(8): 767
doi: 10.1016/S0360-3199(99)00101-9
33 W. E. Triaca, H. A. Peretti, H. L. Corso, A. Bonesi, and A. Visintin, J. Power Energy , 2003, 113: 151
34 T. Z. Huang, Z. Wu, B. J. Xia, and T. S. Huang, Mater. Chem. Phys. , 2005, 93: 544
doi: 10.1016/j.matchemphys.2005.04.004
35 M. Kandavel, V. V. Bhat, A. Rougier, L. Aymarda, G. A. Nazri, and J. M. Tarascon, Int. J. Hydrogen Energy , 2008, 33(14): 3754
doi: 10.1016/j.ijhydene.2008.04.042
36 K. Young, T. Ouchi, J. Koch, and M. A. Fetcenko, J. Alloys Comp. , 2009, 477: 749
37 R. J. Zhang, Y. M. Wang, D. M. Chen, R. Yang, and K. Yang, Acta Mater. , 2006, 54(2): 465
doi: 10.1016/j.actamat.2005.09.027
38 Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, and K. D. Xu, J. Alloys Comp. , 2005, 397: 68
39 S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, D. O. Northwood, J. Alloys Comp. , 1990, 293: 10
40 D. J. Davidson, S. S. Sai Raman, M. V. Lototskyc, and O. N. Srivastava, Int. J. Hydrogen Energy , 2003, 28(12): 1425
doi: 10.1016/S0360-3199(02)00194-5
41 S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy , 2000, 25(2): 143
doi: 10.1016/S0360-3199(99)00032-4
42 F. Li, J. J. Zhao, D. X. Tian, H. L. Zhang, X. Z. Ke, and B. Johansson, J. Appl. Phys. , 2009, 105(4): 043707
doi: 10.1063/1.3081636
43 M. C. Payne, M. P. Teter, D. C. Alan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. , 1992, 64(4): 1045
doi: 10.1103/RevModPhys.64.1045
44 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. , 2005, 220(5-6): 567
doi: 10.1524/zkri.220.5.567.65075
45 J. P. Perdew and Y. Wang, Phys. Rev. B , 1992, 45(23): 13244
doi: 10.1103/PhysRevB.45.13244
46 M. R. Johnson, K. Parlinski, I. Natkaniec, and B. S. Hudson, Chem. Phys. , 2003, 291(1): 53
doi: 10.1016/S0301-0104(03)00178-2
47 D. Vanderbilt, Phys. Rev. B , 1990, 41(11): 7892
doi: 10.1103/PhysRevB.41.7892
48 T. Z. Huang, Z. Wu, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A , 2005, 397: 284
doi: 10.1016/j.msea.2005.02.046
49 J. L. Soubeyroux, M. Bououdina, D. Fruchart, and P. D. Range, J. Alloys Comp. , 1995, 231(1-2): 760
50 L. Pauling, General Chemistry, 3rd Ed., San Francisco: W. H. Freeman Press, 1970
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed