Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (2): 177-196   https://doi.org/10.1007/s11467-011-0173-4
  REVIEW ARTICLE 本期目录
Advanced solar materials for thin-film photovoltaic cells
Advanced solar materials for thin-film photovoltaic cells
Fu-qiang HUANG1,2(), Chong-yin YANG1,3, Dong-yun WAN2
1. College of Engineering and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; 2. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 3. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
 全文: PDF(1412 KB)   HTML
Abstract

As one of the most promising solutions for the green energy, thin-film photovoltaic cell technology is still immature and far from large-scale industrialization. The major issue is getting low cost and stable module efficiency. To solve these problems, a large amount of advanced solar materials have been developed to improve all parts of solar cell modules. Here, some new solar material developments applied in different critical parts of chalcogenide thin-film photovoltaic cells are reviewed. The main efforts are focused on improving light trapping and antireflection, internal quantum efficiency and collection of photo-generated carriers.

Key wordsthin-film solar cell    thin films    CIGS    CdTe
收稿日期: 2010-11-21      出版日期: 2011-06-05
Corresponding Author(s): HUANG Fu-qiang,Email:huangfq@pku.edu.cn   
 引用本文:   
. Advanced solar materials for thin-film photovoltaic cells[J]. Frontiers of Physics, 2011, 6(2): 177-196.
Fu-qiang HUANG, Chong-yin YANG, Dong-yun WAN. Advanced solar materials for thin-film photovoltaic cells. Front. Phys. , 2011, 6(2): 177-196.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0173-4
https://academic.hep.com.cn/fop/CN/Y2011/V6/I2/177
1 M. A. Green, J. Mater. Sci. Mater. Electron. , 2007, 18(S1): S15
2 J. M. Woodcock, H. Schade, H. Maurus, B. Dimmler, J. Springer, and A. Ri-caud, in: Proc. 14th Europ. Photovolt. Solar Energy Conf., edited by H. A. Ossenbrink, P. Helm, and H. Ehmann, Bedford, UK: Stephans, 1997: 857
3 J. G. Mutitu, S. Y. Shi, C. H. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, Opt. Express , 2008, 16(19): 15238
4 C. G. Granqvist, Thin Solid Films , 1990, 193-194: 730
5 D. S. Ginley and C. Bright (Eds.), MRS Bull. , 2000, 25: 15
6 H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett. , 2001, 79(3): 284
7 D. Wan, F. Huang, Y. Wang, X. Mou, and F. Xu, ACS Appl. Mater. Interfaces , 2010, 2(7): 2147
8 R. F. Xiao, J. I. D. Alexander, and F. Rosenberger, Phys. Rev. A , 1991, 43(6): 2977
9 I. Volintiru, M. Creatore, B. J. Kniknie, C. I. M. A. Spee, and M. C. M. van de Sanden, J. Appl. Phys. , 2007, 102(4): 043709-1
10 K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and H. Nishimura, Rep. Res. Lab. Asahi Glass Co. Ltd. , 1992, 42: 129
11 W. N. Shafarman and J. E. Phillips, Proceedings of the 25th IEEE Photovolt, D. C. Washington: Spec. Conf. IEEE, 1996: 917
12 V. G. Glebovsky and E. A. Markaryans, J. Alloys Comp. , 1993, 190(2): 157
13 Y. G. Shen, Mater. Sci. Eng. A , 2003, 359(1-2): 158
14 T. J. Vink, M. A. J. Somers, J. L. C. Daams, and A. G. Dirks, J. Appl. Phys. , 1991, 70(8): 4301
15 A. K. Geim and K. S. Novoselov, Nat. Mater. , 2007, 6(3): 183
16 T. Q. Lin, F. Q. Huang, J. Liang, and Y. X. Wang, Energy & Environ. Sci. ,
doi: 10.1039/c0ee00512f
17 Z. S. Wu, S. F. Pei, W. C. Ren, D. M. Tang, L. B. Gao, B. L. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. , 2009, 21(17): 1756
18 K. S. Krishnan and N. Ganguli, Nature , 1939, 144(3650): 667
19 A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, New York: Wiley, 2003
20 R. B. Petit and C. J. Brinker, Sol. Energy Mater. , 1986, 14: 269
21 C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, Opt. Express , 2007, 15(3): 779
22 S. A. Boden and D. M. Bagnall, Appl. Phys. Lett. , 2008, 93(13): 133108
23 Z. Chen and L. Gao, J. Cryst. Growth , 2006, 293(2): 522
24 M. K. Kim, D. K. Yi, and U. Paik, Langmuir , 2010, 26(10): 7552
25 C. J. Brinker and G. W. Scherer, Sol–Gel Science, San Diego: Academic Press, 1990
26 A. Pudov, J. Sites, and T. Nakada, Jpn. J. Appl. Phys. , 2002, 41(Part 2, No. 6B): L672
27 Z. Zhen, Z. Kui, and H. Fuqiang, J. Inorg. Mater. , 2010, 25: 1
28 H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications, England: John Wiley & Sons Ltd., 2007
29 D. Lincot and R. O. Borges, J. Electrochem. Soc. , 1992, 139(7): 1880
30 F. Gode, C. Gumus, and M. Zor, J. Cryst. Growth , 2007, 299(1): 136
31 G. Conibeer, M. Green, R. Corkish, Y. Cho, E. C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, Thin Solid Films , 2006, 511: 654
32 T. Terasako, Y. Uno, T. Kariya, and S. Shirakata, Sol. Energy Mater. Sol. Cells , 2006, 90(3): 262
33 N. Stratieva, E. Tzvetkova, M. Ganchev, K. Kochev, and I. Tomov, Sol. Energy Mater. Sol. Cells , 1997, 45(1): 87
34 A. Rothwarf and K. W. B?er, JPSSC 10(2-B), Progress in Solid-State Chemistry , 1975, 10(part 2): 71
35 J. H. Schon, V. Alberts, and E. Bucher, Thin Solid Films , 1997, 301(1-2): 115
36 S. B. Moorthy, R. Dhanasekaram, and P. Ramasamy, Thin Solid Films , 1991, 198: 209
37 E. Tzvetkova, N. Stratieva, M. Ganchev, I. Tomov, K. Ivanova, and K. Kochev, Thin Solid Films , 1997, 311(1-2): 101
38 A. Zouaoui, M. Lachab, M. L. Hidalgo, A. Chaffa, C. Llinares, and N. Kesri, Thin Solid Films , 1999, 339(1-2): 10
39 W. Henkel, H. D. Hochheimer, C. Carlone, A. Werner, S. Ves, and H. G. Von Schnering, Phys. Rev. B , 1982, 26(6): 3211
40 M. Hanias, A. N. Anagnoustopoulos, K. Kambas, and J. Spyridelis, Physica B , 1989, 160(2): 154
41 J. F. Guillemoles, Thin Solid Films , 2000, 361-362(1-2): 338
42 A. Zunger, Thin Solid Films , 2007, 515(15): 6160
43 J. Yao, C. N. Kline, H. Gu, M. Yan, and J. A. Aitken, J. Solid State Chem. , 2009, 182(9): 2579
44 M. L. Liu, I. W. Chen, F. Q. Huang, and L. D. Chen, Adv. Mater. , 2009, 21(37): 3808
45 M. L. Liu, F. Q. Huang, L. D. Chen, and I. W. Chen, Appl. Phys. Lett. , 2009, 94(20): 202103
46 X. Y. Shi, F. Q. Huang, M. L. Liu, and L. D. Chen, Appl. Phys. Lett. , 2009, 94(12): 122103
47 M. L. Liu, L. B. Wu, F. Q. Huang, L. D. Chen, and J. A. Ibers, J. Solid State Chem. , 2007, 180(1): 62
48 S. R. Hall, J. T. Szymański, and J. M. Stewart, Can. Mineral. , 1978, 16: 131
49 X. J. wang, M. B. Tang, J. T. Zhao, H. H. Chen, and X. X. Yang, Appl. Phys. Lett. , 2007, 90: 232107
50 G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, New York: Springer, 2001, Chap. 5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed