Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (2): 220-223   https://doi.org/10.1007/s11467-011-0176-1
  RESEARCH ARTICLE 本期目录
Tripyrrylmethane based 2D porous structure for hydrogen storage
Tripyrrylmethane based 2D porous structure for hydrogen storage
Xiao ZHOU (周啸)1, Jian ZHOU (周健)1, Kun Lü (吕坤)2, Qiang SUN (孙强)1,2()
1. Department of Advanced Materials and Nanotechnology, Peking University, Beijing 100871, China; 2. Center for Applied Physics and Technology, Peking University, Beijing 100871, China
 全文: PDF(252 KB)   HTML
Abstract

The key to hydrogen storage is to design new materials with light mass, large surface and rich adsorption sites. Based on the recent experimental success in synthesizing tripyrrylmethane, we have explored Ti-tripyrrylmethane based 2D porous structure for hydrogen storage using density functional theory. We have found that the structure is stable, and the exposed Ti sites can bind three hydrogen molecules with an average binding energy of 0.175 eV/H2, which lies in the energy window for storage and release of hydrogen in room temperature and at the ambient pressure.

Key wordstripyrrylmethane    hydrogen storage
收稿日期: 2010-11-14      出版日期: 2011-06-05
Corresponding Author(s): Qiang SUN (孙强),Email:sunqiang@pku.edu.cn   
 引用本文:   
. Tripyrrylmethane based 2D porous structure for hydrogen storage[J]. Frontiers of Physics, 2011, 6(2): 220-223.
Xiao ZHOU (周啸), Jian ZHOU (周健), Kun Lü (吕坤), Qiang SUN (孙强). Tripyrrylmethane based 2D porous structure for hydrogen storage. Front. Phys. , 2011, 6(2): 220-223.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0176-1
https://academic.hep.com.cn/fop/CN/Y2011/V6/I2/220
1 L. Schlapbach and A. Züttel, Nature , 2001, 414(6861): 353
doi: 10.1038/35104634
2 R. D. Cortright, R. R. Davda, and J. A. Dumesic, Nature , 2002, 418(6901): 964
doi: 10.1038/nature01009
3 J. Alper, Science , 2003, 299(5613): 1686
doi: 10.1126/science.299.5613.1686
4 N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, and O. M. Yaghi, Science , 2003, 300(5622): 1127
doi: 10.1126/science.1083440
5 J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed. , 2005, 44(30): 4670
doi: 10.1002/anie.200462786
6 S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, Chem. Rev. , 2007, 107(10): 4111
doi: 10.1021/cr0501846
7 M. Fichtner, Adv. Eng. Mater. , 2005, 7(6): 443
doi: 10.1002/adem.200500022
8 Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. , 2005, 127(42): 14582
doi: 10.1021/ja0550125
9 Y. Wang and J. P. Perdew, Phys. Rev. B , 1991, 44(24): 13298
doi: 10.1103/PhysRevB.44.13298
10 B. Delley, J. Chem. Phys. , 1990, 92(1): 508
doi: 10.1063/1.458452
11 B. Delley, J. Chem. Phys. , 2000, 113(18): 7756
doi: 10.1063/1.1316015
12 H. J. Monkhorst and J. D. Pack, Phys. Rev. B , 1976, 13(12): 5188
doi: 10.1103/PhysRevB.13.5188
13 D. R. Lide, CRC Handbook of Chemistry and Physics, New York: CRC, 2000
14 S. J. Hong, S. D. Jeong, J. Yoo, J. S. Kim, J. Yoon, and C. H. Lee, Tetrahedron Lett. , 2008, 49(26): 4138
doi: 10.1016/j.tetlet.2008.04.119
15 G. J. Kubas, Acc. Chem. Res. , 1988, 21: 120
doi: 10.1021/ar00147a005
16 J. Niu, B. K. Rao, and P. Jena, Phys. Rev. Lett. , 1998, 68(15): 2277
doi: 10.1103/PhysRevLett.68.2277
17 S. K. Bhatia and A. L. Myers, Langmuir , 2006, 22(4): 1688
doi: 10.1021/la0523816
18 H. S. Gill, I. Finger, I. Bozidarevic, F. Szydlo Szydlo, and M. J. Scott, New J. Chem. , 2005, 29: 68
doi: 10.1039/b412620c
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed