Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (2): 197-203   https://doi.org/10.1007/s11467-011-0186-z
  REVIEW ARTICLE 本期目录
Recent progress of computational investigation on anode materials in Li ion batteries
Recent progress of computational investigation on anode materials in Li ion batteries
Di-hua WU (吴迪华), Zhen ZHOU (周震,)
Institute of New Energy Material Chemistry, College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
 全文: PDF(323 KB)   HTML
Abstract

Computations have been widely used to explore new Li ion battery materials because of its remarkable advantages. In this review, we summarize the recent progress on computational investigation on anode materials in Li ion batteries. By introducing the computational studies on Li storage capability in carbon nanotubes, graphene, alloys and oxides, we reveal that computations have successfully addressed many fundamental problems and are powerful tools to understand and design new anode materials for Li ion batteries.

Key wordsLi ion batteries    anode    carbon nanotubes    graphene    computation
收稿日期: 2010-10-28      出版日期: 2011-06-05
Corresponding Author(s): Zhen ZHOU (周震),Email:zhouzhen@nankai.edu.cn   
 引用本文:   
. Recent progress of computational investigation on anode materials in Li ion batteries[J]. Frontiers of Physics, 2011, 6(2): 197-203.
Di-hua WU (吴迪华), Zhen ZHOU (周震). Recent progress of computational investigation on anode materials in Li ion batteries. Front. Phys. , 2011, 6(2): 197-203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0186-z
https://academic.hep.com.cn/fop/CN/Y2011/V6/I2/197
1 M. K. Aydinol, A. F. Kohan, G. Ceder, K. Cho, and J. Joannopoulos, Phys. Rev. B , 1997, 56(3): 1354
2 K. Kang and G. Ceder, Phys. Rev. B , 2006, 74(9): 094105
3 S. Q. Shi, L. J. Liu, C. Y. Ouyang, D. S. Wang, Z. X. Wang, L. Q. Chen, and X. J. Huang, Phys. Rev. B , 2003, 68(19): 195108
4 C. Y. Ouyang, S. Q. Shi, Z. X. Wang, X. J. Huang, and L. Q. Chen, Phys. Rev. B , 2004, 69(10): 104303
5 S. Q. Shi, C. Y. Ouyang, Z. H. Xiong, L. J. Liu, Z. X. Wang, H. Li, D. S. Wang, L. Q. Chen, and X. J. Huang, Phys. Rev. B , 2005, 71(14): 144404
6 J. Reed and G. Ceder, Chem. Rev. , 2004, 104(10): 4513
7 Y. Meng and M. Dompablo, Energy & Environ. Sci. , 2009, 2: 589
8 Z. Zhou, T. Y. Yan, and X. P. Gao, Acta Phys.–Chim. Sin. , 2006, 22: 1168
9 S. Iijima, Nature , 1991, 354(6348): 56
10 J. E. Fischer, Chem. Innovation , 2000, 30: 21
11 B. Gao, C. Bower, J. D. Lorentzen, L. Fleming, A. Kleinhammes, X. P. Tang, L. E. McNeil, Y. Wu, and O. Zhou, Chem. Phys. Lett. , 2000, 327(1-2): 69
12 J. Zhao, A. Buldum, J. Han, and J. P. Lu, Phys. Rev. Lett. , 2000, 85(8): 1706
13 B. Song, J. Yang, J. Zhao, and H. Fang, Energy & Environ. Sci. , 2011, 4: 1379
14 W. Koh, J. Choi, K. Donaher, S. Lee, and S. Jang, ACS Appl. Mater. Interfaces , 2011,
doi: 10.1021/am200018w
15 T. Kar, J. Pattanayak, and S. Scheiner, J. Phys. Chem. A , 2001, 105(45): 10397
16 H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu, and O. Zhou, Phys. Rev. Lett. , 2001, 88(1): 015502
17 V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Phys. Rev. Lett. , 2002, 88(7): 075506
18 C. Garau, A. Frontera, D. Qui?onero, A. Costa, P. Ballester, and P. M. Deyà, Chem. Phys. Lett. , 2003, 374(5-6): 548
19 C. Garau, A. Frontera, D. Qui?onero, A. Costa, P. Ballester, and P. M. Deyà, Chem. Phys. , 2004, 297(1-3): 85
20 Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, and M. Morinaga, J. Phys. Chem. B , 2004, 108(26): 9023
21 Z. Zhou, X. Gao, J. Yan, D. Song, and M. Morinaga, Carbon , 2004, 42(12-13): 2677
22 Z. Zhou, J. Zhao, X. Gao, Z. Chen, J. Yan, P. v. R. Schleyer, and M. Morinaga, Chem. Mater. , 2005, 17(5): 992
23 J. Zhao, B. Wen, Z. Zhou, Z. Chen, and P. v. R. Schleyer, Chem. Phys. Lett. , 2005, 415(4-6): 323
24 I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, J. Electrochem. Soc. , 2002, 149(1): A39
25 Y. F. Li, Z. Zhou, and L. B. Wang, J. Chem. Phys. , 2008, 129(10): 104703
26 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science , 2004, 306(5696): 666
27 G. X. Wang, X. P. Shen, J. Yao, and J. Park, Carbon , 2009, 47(8): 2049
28 D. Y. Pan, S. Wang, B. Zhao, M. H. Wu, H. J. Zhang, Y. Wang, and Z. Jiao, Chem. Mater. , 2009, 21(14): 3136
29 E. Yoo, J. Kim, E. Hosono, H. S. Zhou, T. Kudo, and I. Honma, Nano Lett. , 2008, 8(8): 2277
30 T. Bhardwaj, A. Antic, B. Pavan, V. Barone, and B. D. Fahlman, J. Am. Chem. Soc. , 2010, 132(36): 12556
31 E. Pollak, B. Geng, K. J. Jeon, I. T. Lucas, T. J. Richardson, F. Wang, and R. Kostecki, Nano Lett. , 2010, 10(9): 3386
32 M. Khantha, N. A. Cordero, L. M. Molina, J. A. Alonso, and L. A. Girifalco, Phys. Rev. B , 2004, 70(12): 125422
33 X. L. Wang, Z. Zeng, H. Ahn, and G. X. Wang, Appl. Phys. Lett. , 2009, 95(18): 183103
34 C. K. Yang, Appl. Phys. Lett. , 2009, 94(16): 163115
35 C. Uthaisar and V. Barone, Nano Lett. , 2010, 10(8): 2838
36 A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, ACS Nano , 2010, 4: 6337
37 L. W. Su, Z. Zhou, and M. M. Ren, Chem. Commun. , 2010, 46(15): 2590
38 W. J. Zhang, J. Power Sources , 2011, 196(1): 13
39 I. A. Courtney, J. S. Tse, O. Mao, J. Hafner, and J. R. Dahn, Phys. Rev. B , 1998, 58(23): 15583
40 S. Matsuno, M. Noji, T. Kashiwagi, M. Nakayama, and M. Wakihara, J. Phys. Chem. C , 2007, 111(20): 7548
41 V. B. Shenoy, P. Johari, and Y. Qi, J. Power Sources , 2010, 195(19): 6825
42 S. Q. Wu, N. L. Cai, Z. Z. Zhu, and Y. Yang, Electrochim. Acta , 2008, 53(27): 7915
43 S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, J. Power Sources , 2003, 119-121: 591
44 H. Ma, F. Cheng, J. Y. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao, and J. Liang, Adv. Mater. , 2007, 19(22): 4067
45 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. , 2008, 3(1): 31
46 T. L. Chan and J. R. Chelikowsky, Nano Lett. , 2010, 10(3): 821
47 Q. Zhang, W. Zhang, W. Wan, Y. Cui, and E. Wang, Nano Lett. , 2010, 10(9): 3243
48 E. Bekaert, F. Robert, P. E. Lippens, and M. Menetrier, J. Phys. Chem. C , 2010, 114(14): 6749
49 T. P. Kumar, R. Ramesh, Y. Y. Lin, and G. T. K. Fey, Electrochem. Commun. , 2004, 6: 520
50 M. F. Ng, J. W. Zheng, and P. Wu, J. Phys. Chem. C , 2010, 114(18): 8542
51 J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, J. Phys. Chem. C , 2009, 113(31): 14015
52 G. Ceder, Y. M. Chiang, D. R. Sadoway, M. K. Aydinol, Y. I. Jang, and B. Huang, Nature , 1998, 392(6677): 694
53 K. Nakahara, R. Nakajima, T. Matsushima, and H. Majima, J. Power Sources , 2003, 117(1-2): 131
54 G. X. Wang, D. H. Bradhurst, S. X. Dou, and H. K. Liu, J. Power Sources , 1999, 83(1-2): 156
55 K. N. Jung, S. I. Pyun, and S. W. Kim, J. Power Sources , 2003, 119-121: 637
56 C. Y. Ouyang, Z. Y. Zhong, and M. S. Lei, Electrochem. Commun. , 2007, 9(5): 1107
57 Z. Zhong, C. Ouyang, S. Shi, and M. Lei, ChemPhysChem , 2008, 9(14): 2104
58 X. Chen and S. S. Mao, Chem. Rev. , 2007, 107(7): 2891
59 A. R. Armstrong, G. Armstrong, J. Canales, R. García, and P. G. Bruce, Adv. Mater. , 2005, 17: 862
60 M. Wagemaker, A. P. M. Kentgens, and F. M. Mulder, Nature , 2002, 418(6896): 397
61 H. Zhang, G. R. Li, L. P. An, T. Y. Yan, X. P. Gao, and H. Y. Zhu, J. Phys. Chem. C , 2007, 111(16): 6143
62 L. Kavan, M. Kalbá?, M. Zukalová, I. Exnar, V. Lorenzen, R. Nesper, and M. Graetzel, Chem. Mater. , 2004, 16: 477
63 Y. S. Hu, L. Kienle, Y. G. Guo, and J. Maier, Adv. Mater. , 2006, 18(11): 1421
64 G. Armstrong, A. Armstrong, P. G. Bruce, P. Reale, and B. Scrosati, Adv. Mater. , 2006, 18(19): 2597
65 M. V. Koudriachova, N. M. Harrison, and S. W. de Leeuw, Phys. Rev. Lett. , 2001, 86(7): 1275
66 M. V. Koudriachova, S. W. de Leeuw, and N. M. Harrison, Chem. Phys. Lett. , 2003, 371(1-2): 150
67 M. V. Koudriachova, Chem. Phys. Lett. , 2008, 458(1-3): 108
68 F. Tielens, M. Calatayud, A. Beltrán, C. Minot, and J. Andrés, J. Electroanal. Chem. , 2005, 581(2): 216
69 M. V. Koudriachova, N. M. Harrison, and S. W. de Leeuw, Solid State Ion. , 2003, 157(1-4): 35
70 M. V. Koudriachova, N. M. Harrison, and S. W. de Leeuw, Solid State Ion. , 2004, 175(1-4): 829
71 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nature , 2000, 407(6803): 496
72 M. Armand and J. M. Tarascon, Nature , 2008, 451(7179): 652
73 X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, J. Phys. Chem. B , 2004, 108(18): 5547
74 S. M. Yuan, J. X. Li, L. T. Yang, L. W. Su, L. Liu, and Z. Zhou, ACS Appl. Mater. Interfaces , 2011, 3(3): 705
75 L. Liu, Y. Li, S. M. Yuan, M. Ge, M. M. Ren, C. S. Sun, and Z. Zhou, J. Phys. Chem. C , 2010, 114(1): 251
76 K. R. Kganyago and P. E. Ngoepe, Phys. Rev. B , 2003, 68(20): 205111
77 G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. , 2000, 113(22): 9901
78 K. Toyoura, Y. Koyama, A. Kuwabara, and I. Tanaka, J. Phys. Chem. C , 2010, 114(5): 2375
79 K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba, and I. Tanaka, Phys. Rev. B , 2008, 78(21): 214303
80 K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, and G. Ceder, J. Phys. Chem. Lett. , 2010, 1(8): 1176
81 K. Leung and J. L. Budzien, Phys. Chem. Chem. Phys. , 2010, 12(25): 6583
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed