Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2012, Vol. 7 Issue (2): 150-159   https://doi.org/10.1007/s11467-011-0194-z
  RESEARCH ARTICLE 本期目录
(3+1)-TQFTs and topological insulators
(3+1)-TQFTs and topological insulators
Kevin Walker, Zhenghan Wang()
Microsoft Station Q, CNSI Bldg. Rm. 2243, University of California, Santa Barbara, CA 93106-6105, USA
 全文: PDF(260 KB)   HTML
Abstract

Levin-Wen models are microscopic spin models for topological phases of matter in (2+ 1)-dimension. We introduce a generalization of such models to (3+ 1)-dimension based on unitary braided fusion categories, also known as unitary premodular categories. We discuss the ground state degeneracy on 3-manifolds and statistics of excitations which include both points and defect loops. Potential connections with recently proposed fractional topological insulators and projective ribbon permutation statistics are described.

Key wordstopological quantum field theory (TQFT)    topological insulator    premodular category
收稿日期: 2011-04-27      出版日期: 2012-04-01
Corresponding Author(s): Wang Zhenghan,Email:zhenghwa@microsoft.com   
 引用本文:   
. (3+1)-TQFTs and topological insulators[J]. Frontiers of Physics, 2012, 7(2): 150-159.
Kevin Walker, Zhenghan Wang. (3+1)-TQFTs and topological insulators. Front. Phys. , 2012, 7(2): 150-159.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0194-z
https://academic.hep.com.cn/fop/CN/Y2012/V7/I2/150
1 M. Levin and X.-G. Wen, Phys. Rev. B , 2005, 71-045110 ; arXiv:cond-mat/0404617v2 , 2004
doi: 10.1103/PhysRevB.71.045110
2 X.-G. Wen, Phys. Rev. B , 2002, 65: 165113; arXiv:condmat/ 0107071 , 2001
3 X.-G. Wen, Phys.Rev. D , 2003, 68: 065003; arXiv:hepth/ 0302201 , 2003
4 M. Epple, Math. Intelligencer , 1998, 20(1): 45
doi: 10.1007/BF03024400
5 J. Maciejko, X.-L. Qi, A. Karch, and S.-C. Zhang, arXiv:1004.3628 , 2010
6 B. Swingle, M. Barkeshli, J. McGreevy, and T. Senthil, arXiv:1005.1076 , 2010
7 G.-Y. Cho and J. E. Moore, arXiv:1011.3485 , 2010
8 R. E. Gompf, J. Differential Geom. , 1985, 21(2): 283
9 M. H. Freedman and F. Quinn, Topology of 4-manifolds. Princeton Mathematical Series 39, Princeton , NJ: Princeton University Press, 1990: viii+259
10 E. Witten, Commun. Math. Phys. , 1988, 117: 353
doi: 10.1007/BF01223371
11 S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds. Oxford Mathematical Monographs. Oxford Science Publications . New York: The Clarendon Press, Oxford University Press, 1990: x+440
12 R. Dijkgraaf and E. Witten, Commun. Math. Phys . 1990, 129(2): 393
doi: 10.1007/BF02096988
13 J. Baez, Lett. Math. Phys. , 1996, 38(2): 129
doi: 10.1007/BF00398315
14 E. Witten, arXiv:1101.3216 , 2011
15 D. Freed, Commun. Math. Phys. , 1994, 159(2): 343
doi: 10.1007/BF02102643
16 E. Witten, Math. Res. Lett. , 1994, 1(6): 769
17 K. Walker, TQFTs , http://canyon23.net/math/
18 K. Walker and Z. Wang, (3+1)-TQFTs based on premodular categories, in preparation
19 Z. Wang, Topological quantum computation. CBMS Regional Conference Series in Mathematics, 112, Providence , RI: American Mathematical Society, 2010: xiv+115
20 R. Benedetti and C. Petronio, Ann. Mat. Pura Appl. , 2000, 178(4): 81
doi: 10.1007/BF02505889
21 M. Freedman, C. Nayak, K. Walker, and Z. Wang, On picture (2+1)-TQFTs, in: Topology and Physics, Nankai Tracts Math. 12, Hackensack , NJ: World Sci. Publ., 2008, 19; arXiv:0806.1926, 2008
22 L. Crane and D. Yetter, A categorical construction of 4D topological quantum field theories. Quantum Topology, 120130, Ser. Knots Everything, 3, River Edge , NJ: World Sci. Publ., 1993
23 X.-S. Lin, Topology and Physics, Nankai Tracts Math. 12, Hackensack , NJ: World Sci. Publ., 2008: 359
24 M. Müuger, J. Pure Appl. Algebra , 2003, 180(1-2): 159
doi: 10.1016/S0022-4049(02)00248-7
25 V. Turaev and A. Virelizier, arXiv:1006.3501 , 2010
26 B. Balsam and A. KirillovJr., arXiv:1004.1533 , 2010
27 V. Ostrik, arXiv:math/0401347 , 2004
28 E. Witten, Commun. Math. Phys. , 1989, 121(3): 351
doi: 10.1007/BF01217730
29 X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B , 2008, 78: 195424
doi: 10.1103/PhysRevB.78.195424
30 M. Freedman, M. B. Hastings, C. Nayak, X.-L. Qi, K. Walker, and Z. Wang, Phys. Rev. B , 2011, 83: 115; arXiv:1005.0583, 2010
doi: 10.1103/PhysRevB.83.115132
31 N. Read and Z. Wang, Spin modular categroies (in preparation)
32 M. Freedman, A. Kitaev, C. Nayak, J. Slingerland, K. Walker, and Z. Wang, Geometry and Topology , 2005, 9-53 : 2303; arXiv:math.GT/0503054, 2005
33 Z.-G. Gu, Z. Wang, and X.-G. Wen, arXiv:1010.1517 , 2010
34 E. Witten, J. Math. Phys. , 1994, 35(10): 5101
doi: 10.1063/1.530745
35 E. Witten, Bull. Amer. Math. Soc. (N. S.) , 2007, 44(3): 361 (electronic)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed