Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2012, Vol. 7 Issue (3): 353-359   https://doi.org/10.1007/s11467-011-0209-9
  RESEARCH ARTICLE 本期目录
First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs
First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs
Shun-li Yue, Hong Zhang()
College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
 全文: PDF(652 KB)   HTML
Abstract

The adsorptions of rare-earth (RE) atoms on (6, 0) and (8, 0) single-walled carbon nanotubes (SWCNTs) have been investigated by using the first-principles pseudopotential plane wave method within density functional theory (DFT). The binding energy, Mulliken charge, magnetic properties, band structure and DOS were calculated and analyzed. Most of RE atoms including Nd, Sm and Eu have a magnetic ground state with a significant magnetic moment. Some electrons transfer between RE-5d, 6s and C-2p orbitals. Owing to the curvature effect, the values of binding energy for RE atoms doped (6, 0) SWCNT are lower than those of the same atoms on (8, 0) SWCNT. The pictures of DOS show that hybridizations between RE-5d, 6s states and C-2p orbitals and between RE-4f and C-2p orbitals appear near the Fermi level. Results indicate that the properties of SWCNTs can be modified by the adsorptions of RE atoms.

Key wordsDFT    RE atoms    single-walled carbon nanotubes (SWCNTs)    doping
收稿日期: 2011-07-13      出版日期: 2012-06-01
Corresponding Author(s): Zhang Hong,Email:hongzhang@scu.edu.cn   
 引用本文:   
. First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs[J]. Frontiers of Physics, 2012, 7(3): 353-359.
Shun-li Yue, Hong Zhang. First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs. Front. Phys. , 2012, 7(3): 353-359.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0209-9
https://academic.hep.com.cn/fop/CN/Y2012/V7/I3/353
1 S. Iijima, Nature , 1991, 354(7): 56
doi: 10.1038/354056a0
2 M. S. Dresselhaus, G. Presselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Heidelberg: Springer, 2001
doi: 10.1007/3-540-39947-X
3 Z. X. Guo and X. G. Gong, Front. Phys. China , 2009, 4(3): 389
doi: 10.1007/s11467-009-0039-1
4 P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Trans. Nanotech. , 2002, 1 (1): 78
doi: 10.1109/TNANO.2002.1005429
5 Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett. , 2004, 84(9): 1525
doi: 10.1063/1.1655692
6 T. Yildirim and S. Ciraci, Phys. Rev. Lett. , 2005, 94(17): 175501
doi: 10.1103/PhysRevLett.94.175501
7 W. Z. Lia, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G. Q. Sun, and Q. Xin, Carbon , 2002, 40(5): 791
doi: 10.1016/S0008-6223(02)00039-8
8 Y. Yagi, T. M. Briere, M. H. F. Sluiter, V. Kumar, A. A. Farajian, and Y. Kawazoe, Phys. Rev. B , 2004, 69(7): 075414
doi: 10.1103/PhysRevB.69.075414
9 F. Li, J. J. Zhao, and L. X. Sun, Front. Phys. , 2011, 6(2): 214
10 M. Li, Y. F. Li, Z. Zhou, and P. W. Shen, Front. Phys. , 2011, 6(2): 224
11 H. Zhang and X. D. Li, Front. Phys. , 2011, 6(2): 231
12 X. Zhou, J. Zhou, K. Lü, and Q. Sun, Front. Phys. , 2011, 6(2): 220
13 J. H. Lan, D. P. Cao, and W. C. Wang, J. Phys. Chem. C , 2010, 114(7): 3108
doi: 10.1021/jp9106525
14 Z. J. Shi, Y. F. Lian, X. H. Zhou, Z. N. Gu, Y. G. Zhang, S. Iijima, L. X. Zhou, K. T. Yue, and S. L. Zhang, Carbon , 1999, 37(9): 1449
doi: 10.1016/S0008-6223(99)00007-X
15 A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science , 1996, 273(5274): 483
doi: 10.1126/science.273.5274.483
16 H. J. Jeong, K. H. An, S. C. Lim, M. S. Park, J. S. Chang, and Y. H. Lee, Chem. Phys. Lett. , 2003, 380(3): 263
doi: 10.1016/j.cplett.2003.09.028
17 C. Jo, C. Kim, and Y. H. Lee, Phys. Rev. B , 2002, 65(3): 035420
doi: 10.1103/PhysRevB.65.035420
18 J. J. Zhao, A. Buldum, J. Han, and J. P. Lu, Phys. Rev. Lett. , 2000, 85(8): 1706
doi: 10.1103/PhysRevLett.85.1706
19 J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, J. Phys. Chem. C , 2009, 113(3): 14015
doi: 10.1021/jp809266n
20 E. Durgun, S. Dag, V. M. K. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. B , 2003, 67(20): 201401
doi: 10.1103/PhysRevB.67.201401
21 E. Durgun, S. Dag, S. Ciraci, and O. Gülseren, J. Phys. Chem. B , 2004, 108(2): 575
doi: 10.1021/jp0358578
22 Y. L. Mao, X. H. Yan, and Y. Xiao, Nanotechnology , 2005, 16(12): 3092
doi: 10.1088/0957-4484/16/12/061
23 A. Vdomveoh, T. Kerecharoen, and T. Osotchan, Chem. Phys. Lett. , 2005, 406(2): 161
24 Y. J. Kang, J. Choi, C. Y. Moon, and K. J. Chang, Phys. Rev. B , 2005, 71(11): 115411
doi: 10.1103/PhysRevB.71.115441
25 V. V. Ivanovskaya, C. K?hler, and G. Seifert, Phys. Rev. B , 2007, 75(7): 075410
doi: 10.1103/PhysRevB.75.075410
27 J. C. Xie, Y. J. Tang, and H. Zhang, Cent. Eur. J. Phys. , 2010, 9(3): 716
doi: 10.2478/s11534-010-0052-6
28 Z. W. Zhang, J. C. Li, and Q. Jiang, J. Phys. Chem. C , 2010, 114(8): 7733
doi: 10.1021/jp100017y
29 J. P. Perdew and Y. Wang, Phys. Rev. B , 1992, 45(23): 13244
doi: 10.1103/PhysRevB.45.13244
30 B. Delley, J. Chem. Phys., 2000, 113(18): 7756
doi: 10.1063/1.1316015
31 Y. Luo, J. Baldamus, O. Tardif, and Z. Hou, Organometallics , 2005, 24(18): 4362
doi: 10.1021/om0502382
32 C. M. Fang, J. Bauer, J. Y. Saillard, and J. F. Halet, J. Solid State Chem. , 2007, 180(9): 2465
doi: 10.1016/j.jssc.2007.06.028
33 A. Delin, P. M. Oppeneer, M. S. S. Brooks, T. Kraft, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B , 1997, 55(16): R10173
doi: 10.1103/PhysRevB.55.R10173
34 S. J. S. Jalali Asadabadi and H. Akbarzadeh, Physica B , 2004, 76(4): 349
35 A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguín, Phys. Rev. B , 2008, 78(13): 035107
doi: 10.1103/PhysRevB.78.035107
36 A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Phys. Rev. B , 1998, 58(8): 4345
doi: 10.1103/PhysRevB.58.4345
37 B. Delley, Phys. Rev. B , 2002, 66(15): 155125
doi: 10.1103/PhysRevB.66.155125
38 H. J. Monkhorst and J. D. Pack, Phys. Rev. B , 1976, 13(12): 5188
doi: 10.1103/PhysRevB.13.5188
39 O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. Lett. , 2001, 87(11): 116802
doi: 10.1103/PhysRevLett.87.116802
40 H. Kuramochi, T. Vzumaki, M. Yamka, H. Akinaga, and H. Yokoyama, Nanotechnology , 2005, 16(1): 24
doi: 10.1088/0957-4484/16/1/006
41 L. Zhu, K. L. Yao, and Z. L. Liu, Solid State Commun. , 2007, 141(11): 628
doi: 10.1016/j.ssc.2006.12.032
42 G. L. Lu, K. M. Deng, H. P. Wu, J. L. Yang, and X. Wang, J. Chem. Phys. , 2006, 124(5): 054305
doi: 10.1063/1.2162895
43 X. Blasé, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. Lett. , 1994, 72(12): 1878
doi: 10.1103/PhysRevLett.72.1878
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed