Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2012, Vol. 7 Issue (3): 324-327   https://doi.org/10.1007/s11467-011-0239-3
  PERSPECTIVE 本期目录
Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors
Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors
Liang-feng Huang, Zhi Zeng()
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
 全文: PDF(331 KB)   HTML
Abstract

It is promising to apply quantum-mechanically confined graphene systems in field-effect transistors. High stability, superior performance, and large-scale integration are the main challenges facing the practical application of graphene transistors. Our understandings of the adatom-graphene interaction combined with recent progress in the nanofabrication technology indicate that very stable and high-quality graphene nanostripes could be integrated in substrate-supported functionalized (hydrogenated or fluorinated) graphene using electron-beam lithography.We also propose that parallelizing a couple of graphene nanostripes in a transistor should be preferred for practical application, which is also very useful for transistors based on graphene nanoribbon.

Key wordsgraphene nanostripe    functionalized graphene    field-effect transistor
收稿日期: 2011-11-08      出版日期: 2012-06-01
Corresponding Author(s): Zeng Zhi,Email:zzeng@theory.issp.ac.cn   
 引用本文:   
. Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors[J]. Frontiers of Physics, 2012, 7(3): 324-327.
Liang-feng Huang, Zhi Zeng. Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors. Front. Phys. , 2012, 7(3): 324-327.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0239-3
https://academic.hep.com.cn/fop/CN/Y2012/V7/I3/324
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science , 2004, 306(5696): 666
doi: 10.1126/science.1102896
2 A. K. Geim and K. S. Novoselov, Nat. Mater. , 2007, 6(3): 183
doi: 10.1038/nmat1849
3 D. C. Wei and Y. Q. Liu, Adv. Mater. , 2010, 22(30): 3225
doi: 10.1002/adma.200904144
4 A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, and F. Nori, Phys. Rep. , 2011, 503(2-3): 77
doi: 10.1016/j.physrep.2011.02.002
5 V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Mater. Sci. , 2011, 56(8): 1178
doi: 10.1016/j.pmatsci.2011.03.003
6 F. Molitor, J. Güttinger, C. Stampfer, S. Dr?scher, A. Jacobsen, T. Ihn, and K. Ensslin, J. Phys.: Condens. Matter , 2011, 23(24): 243201
doi: 10.1088/0953-8984/23/24/243201
7 C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terr′es, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dr?scher, T. Ihn, and K. Ensslin, Front. Phys. , 2011, 6(3): 271
8 W. D. Sheng, M. Korkusinski, A. D. Güclü, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Front. Phys. , 2012, 7(3): 328
doi: 10.1007/s11467-011-0200-5
9 Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Adv. Funct. Mater. , 2009, 19(19): 3077
doi: 10.1002/adfm.200901007
10 M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature , 2011, 474(7349): 64
doi: 10.1038/nature10067
11 Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Haley, Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, Nat. Photon. , 2011, 5(7): 411
doi: 10.1038/nphoton.2011.102
12 F. Schwierz, Nat. Nanotechnol. , 2010, 5(7): 487
doi: 10.1038/nnano.2010.89
13 Z. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, Physica E , 2007, 40(2): 228
doi: 10.1016/j.physe.2007.06.020
14 M. Y. Han, B. ?zyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. , 2007, 98(20): 206805
doi: 10.1103/PhysRevLett.98.206805
15 X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. , 2008, 100(20): 206803
doi: 10.1103/PhysRevLett.100.206803
16 X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science , 2008, 319(5867): 1229
doi: 10.1126/science.1150878
17 L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nat. Nanotechnol. , 2010, 5(5): 321
doi: 10.1038/nnano.2010.54
18 C. Tao, L. Jiao, O. V. Yazyev, Y. C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, and S. G. Louie, Nat. Phys. , 2011, 7: 616
doi: 10.1038/nphys1991
19 L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herro, Nano Lett. , 2009, 9(7): 2600
doi: 10.1021/nl900811r
20 J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Nature , 2010, 466(7305): 470
doi: 10.1038/nature09211
21 M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, and C. Berger, Nat. Nanotechnol. , 2010, 5(10): 727
doi: 10.1038/nnano.2010.192
22 X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Nano Lett. , 2010, 10(7): 2454
doi: 10.1021/nl100750v
23 R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, Adv. Mater. , 2010, 22(36): 4014
doi: 10.1002/adma.201000618
24 P. Koskinen, S. Malola, and H. H?kkinen, Phys. Rev. B , 2009, 80(7): 073401
doi: 10.1103/PhysRevB.80.073401
25 X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science , 2009, 324: 76
26 P. Gallagher, K. Todd, and D. Goldhaber-Gordon, Phys. Rev. B , 2010, 81(11): 115409
doi: 10.1103/PhysRevB.81.115409
27 H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, ACS Nano , 2010, 4(12): 7221
doi: 10.1021/nn101950n
28 G. Xu, Jr. C. M. Torres, J. Tang, J. Bai, E. B. Song, Y. Huang, X. Duan, Y. Zhang, and K. L. Wang, Nano Lett. , 2011, 11(3): 1082
doi: 10.1021/nl103966t
29 J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang, and X. Duan, Nat. Nanotechnol. , 2010, 5(9): 655
doi: 10.1038/nnano.2010.154
30 W. Y. Kim and K. S. Kim, Nat. Nanotechnol. , 2008, 3(7): 408
doi: 10.1038/nnano.2008.163
31 A. K. Singh and B. I. Yakobson, Nano Lett. , 2009, 9(4): 1540
doi: 10.1021/nl803622c
32 A. K. Singh, E. S. Penev, and B. I. Yakobson, ACS Nano , 2010, 4(6): 3510
doi: 10.1021/nn1006072
33 E. Mu?noz, A. K. Singh, M. A. Ribas, E. S. Penev, and B. I. Yakobson, Diamond Related Materials , 2010, 19(5-6): 368
34 M. A. Ribas, A. K. Singh, P. B. Sorokin, and B. I. Yakobson, Nano Res. , 2011, 4(1): 143
doi: 10.1007/s12274-010-0084-7
35 L. F. Huang, X. H. Zheng, G. R. Zhang, L. L. Li, and Z. Zeng, J. Phys. Chem. C , 2011, 115(43): 21088
doi: 10.1021/jp208067y
36 A. A. Tseng, A. Notargiacomo, and T. P. Chen, J. Vac. Technol. B , 2005, 23(3): 877
doi: 10.1116/1.1926293
37 C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett. , 2009, 103(24): 246804
doi: 10.1103/PhysRevLett.103.246804
38 J. A. Robinson, M. Hollander, M. III Labella, K. A. Trumbull, R. Cavelero, and D. W. Snyder, Nano Lett. , 2011, 11(9): 3875
doi: 10.1021/nl2019855
39 S. L. Wong, H. Huang, Y. Wang, L. Cao, D. Qi, I. Santoso, W. Chen, and A. T. S. Wee, ACS Nano , 2011, 5(9): 7662
doi: 10.1021/nn202910t
40 Y. Lin, F. Ding, and B. I. Yakobson, Phys. Rev. B , 2008, 78(4): 041402(R)
doi: 10.1103/PhysRevB.78.041402
41 Z. M. Ao, A. D. Nern′andez-Nieves, F. M. Peeters, and S. Li, Appl. Phys. Lett. , 2010, 97(23): 233109
doi: 10.1063/1.3525377
42 J. H. Lee and J. C. Grossman, Appl. Phys. Lett. , 2010, 97(13): 133102
doi: 10.1063/1.3495771
43 P. Sessi, J. R. Guest, M. Bode, and N. P. Guisinger, Nano Lett. , 2009, 9(12): 4343
doi: 10.1021/nl902605t
44 F. Withers, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, Nano Lett. , 2011, 11(9): 3912
doi: 10.1021/nl2020697
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed