Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films
Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films
Cheng-Liang Lu(陆成亮)1(), Jun-Ming Liu(刘俊明)2,3(), Tao Wu(吴韬)4
1. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China; 3. International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China; 4. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
Highly compressively strained BiFeO3 thin films with different thickness are epitaxially grown on (001) LaAlO3 substrates and characterized using various techniques. The quasi-tetragonal phase with a giant axial ratio of ~1.25 and its thickness-dependent evolution are investigated. An interesting twining structure of the quasi-tetragonal phase is evidenced in thicker films through detailed reciprocal space mapping, which becomes more pronounced with increasing film thickness. Moreover, an interesting electric-field driven phase transition was evidenced in the film with a thickness of 38 nm, in which the quasi-tetragonal and rhombohedral phases are close to each other in energy landscape.
. Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films[J]. Frontiers of Physics, 2012, 7(4): 424-428.
Cheng-Liang Lu(陆成亮), Jun-Ming Liu(刘俊明), Tao Wu(吴韬). Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films. Front. Phys. , 2012, 7(4): 424-428.
J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science , 2003, 299(5613): 1719 doi: 10.1126/science.1080615
2
T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater. , 2006, 5(10): 823 doi: 10.1038/nmat1731
C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Q. He, P.Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, Nat. Mater. , 2009, 8(6): 485 doi: 10.1038/nmat2432
S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, L.W. Ager, L. W. Martin, and R. Ramesh, Nat. Nanotechnol. , 2010, 5(2): 143 doi: 10.1038/nnano.2009.451
7
S. Fujino, M. Murakami, V. Anbusathaiah, S. H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi, Appl. Phys. Lett. , 2008, 92(20): 202904 doi: 10.1063/1.2931706
8
D. Kan, L. Palova, V. Anhusathaiah, C. J. Cheng, S. Fujino, V. Nagarajan, K. M. Rabe, and I. Takeuchi, Adv. Funct. Mater. , 2010, 20(7): 1108 doi: 10.1002/adfm.200902017
9
C. J. Cheng, D. Kan, S. H. Lim, W. R. Mckenzie, P. R. Munroe, L. G. Salamanca-Riba, R. L. Withers, I. Takeuchi, and V. Nagarajan, Phys. Rev. B , 2009, 80(1): 014109 doi: 10.1103/PhysRevB.80.014109
H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthélémy, Phys. Rev. Lett. , 2009, 102(21): 217603 doi: 10.1103/PhysRevLett.102.217603
14
R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science , 2009, 326(5955): 977 doi: 10.1126/science.1177046
15
C. J. Cheng, C. L. Lu, Z. H. Chen, L. You, L. Chen, J. Wang, and T. Wu, Appl. Phys. Lett. , 2011, 98(24): 242502 doi: 10.1063/1.3600064
16
J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y. H. Chu, and R. Ramesh, Phys. Rev. Lett. , 2011, 107(14): 147602 doi: 10.1103/PhysRevLett.107.147602
17
A. R. Damodaran, C. W. Liang, Q. He, C. Y. Peng, L. Chang, Y. H. Chu, and L. W. Martin, Adv. Mater. , 2011, 23(28): 3170 doi: 10.1002/adma.201101164
18
Z. H. Chen, S. Prosandeev, Z. L. Luo, W. Ren, Y. J. Qi, C. W. Huang, L. You, C. Gao, I. A. Kornev, T. Wu, J. Wang, P. Yang, T. Sritharan, L. Bellaiche, and L. Chen, Phys. Rev. B , 2011, 84(9): 094116 doi: 10.1103/PhysRevB.84.094116
19
A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B , 2010, 81(5): 054109 doi: 10.1103/PhysRevB.81.054109
20
B. Dupé, I. C. Infante, G. Geneste, P. E. Janolin, M. Bibes, A. Barthélémy, S. Lisenkov, L. Bellaiche, S. Ravy, and B. Dkhil, Phys. Rev. B , 2010, 81(14): 144128 doi: 10.1103/PhysRevB.81.144128
21
Z. H. Chen, Z. L. Luo, C.W. Huang, Y. J. Qi, P. Yang, L. You, C. S. Hu, T. Wu, J. L. Wang, C. Gao, T. Sritharan, and L. Chen, Adv. Funct. Mater. , 2011, 21(1): 133 doi: 10.1002/adfm.201001867
22
C. L. Lu, Y. Wang, L. You, X. Zhou, H. Y. Peng, G. Z. Xing, E. E. M. Chia, C. Panagopoulos, L. Chen, J. M. Liu, J. Wang, and T. Wu, Appl. Phys. Lett. , 2010, 97(25): 252905 doi: 10.1063/1.3530446
23
S. H. Xie, A. Gannepalli, Q. N. Chen, Y. M. Liu, Y. C. Zhou, R. Proksch, and J. Y. Li, Nanoscale , doi: 10.1039/c1nr11099c
24
C. J. M. Daumont, S. Farokhipoor, A. Ferri, J. C. Wojdel, J. í?iguez, B. J. Kooi, and B. Noheda, Phys. Rev. B , 2010, 81(14): 144115 doi: 10.1103/PhysRevB.81.144115
25
D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, Nano Lett. , 2010, 10(7): 2555 doi: 10.1021/nl101187a