Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions
Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions
Yan-Biao Gan1,2,3 , Ai-Guo Xu2 ( ), Guang-Cai Zhang2 , Ying-Jun Li3 ( )
1. North China Institute of Aerospace Engineering, Langfang 065000, China; 2. National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China; 3. State Key Laboratory for GeoMechanics and Deep Underground Engineering, SMCE, China University of Mining and Technology (Beijing), Beijing 100083, China
Abstract :The aims of the present paper are threefold. First, we further study the fast Fourier transform thermal lattice Boltzmann (FFT–TLB) model for van der Waals (VDW) fluids proposed in Phys. Rev. E, 2011, 84(4): 046715. We analyze the merits of the FFT approach over the traditional finite difference scheme and investigate the effects of smoothing factors on accuracy and stability in detail. Second, we incorporate the VDW equation of state with flexible parameters into the FFT–TLB model. As a result, the revised model may be used to handle multiphase flows with various critical densities and temperatures. Third, we design appropriate boundary conditions for systems with solid walls. These improvements, from the views of numerics and physics, significantly extend the application scope of the model in science and engineering.
Key words :
van der Waals fluids
lattice Boltzmann method
FFT
equation of state
收稿日期: 2011-12-04
出版日期: 2012-08-01
Corresponding Author(s):
Xu Ai-Guo,Email:Xu Aiguo@iapcm.ac.cn; Li Ying-Jun,Email:lyj@aphy.iphy.ac.cn
1
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, London : Cambridge University Press , 1970
2
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York : Oxford University Press , 2001
3
Z. Guo and C. Zheng, Theory and Applications of Lattice Boltzmann Method, Beijing : Science Press , 2009 (in Chinese)
4
A. Xu, Phys. Rev. E , 2005, 71(6): 066706 doi: 10.1103/PhysRevE.71.066706
5
A. Xu, Europhys. Lett. , 2005, 69(2): 214 doi: 10.1209/epl/i2004-10334-y
6
Y. Gan, A. Xu, G. Zhang, X. Yu, and Y. Li, Physica A , 2008, 387(8-9): 1721 doi: 10.1016/j.physa.2007.11.013
7
Z. Guo, C. Zheng, and B. Shi, Phys. Rev. E , 2008, 77(3): 036707 doi: 10.1103/PhysRevE.77.036707
8
B. Shi and Z. Guo, Phys. Rev. E , 2009, 79(1): 016701 doi: 10.1103/PhysRevE.79.016701
9
Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E , 2007, 76(5): 056705 doi: 10.1103/PhysRevE.76.056705
10
Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Phys. Rev. E , 2009, 80(3): 037702 doi: 10.1103/PhysRevE.80.037702
11
Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Microfluid. Nanofluid. , 2011, 10(3): 607 doi: 10.1007/s10404-010-0693-1
12
Q. Li, K. H. Luo, Y. L. He, Y. J. Gao, and W. Q. Tao, Phys. Rev. E , 2012, 85(1): 016710 doi: 10.1103/PhysRevE.85.016710
13
H. Lai and C. Ma, J. Stat. Mech.: Theory Exp. , 2010, 2010(4): P04011 doi: 10.1088/1742-5468/2010/04/P04011
14
H. Lai and C. Ma, Phys. Rev. E , 2011, 84(4): 046708 doi: 10.1103/PhysRevE.84.046708
15
H. Li, X. Lu, H. Fang, and Y. Qian, Phys. Rev. E , 2004, 70(2): 026701 doi: 10.1103/PhysRevE.70.026701
16
B. Wen, H. Li, C. Zhang, and H. Fang, Phys. Rev. E , 2012, 85(1): 016704 doi: 10.1103/PhysRevE.85.016704
17
D. H. Rothman and J. M. Keller, J. Stat. Phys. , 1988, 52(3-4): 1119 doi: 10.1007/BF01019743
18
A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, Phys. Rev. A , 1991, 43(8): 4320 doi: 10.1103/PhysRevA.43.4320
19
X. Shan and H. Chen, Phys. Rev. E , 1993, 47(3): 1815 doi: 10.1103/PhysRevE.47.1815
20
X. Shan and H. Chen, Phys. Rev. E , 1994, 49(4): 2941 doi: 10.1103/PhysRevE.49.2941
21
M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett. , 1995, 75(5): 830 doi: 10.1103/PhysRevLett.75.830
22
W. R. Osborn, E. Orlandini, M. R. Swift, J. M. Yeomans, and J. R. Banavar, Phys. Rev. Lett. , 1995, 75(22): 4031 doi: 10.1103/PhysRevLett.75.4031
23
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E , 2003, 67(5): 056105 doi: 10.1103/PhysRevE.67.056105
24
A. Xu, G. Gonnella, and A. Lamura, Physica A , 2004, 331(1-2): 10 doi: 10.1016/j.physa.2003.09.040
25
A. Xu, G. Gonnella, and A. Lamura, Physica A , 2004, 344(3-4): 750 doi: 10.1016/j.physa.2004.06.057
26
A. Xu, G. Gonnella, A. Lamura, G. Amati, and F. Massaioli, Europhys. Lett. , 2005, 71(4): 651 doi: 10.1209/epl/i2005-10130-3
27
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E , 2006, 74(1): 011505 doi: 10.1103/PhysRevE.74.011505
28
A. Xu, G. Gonnella, and A. Lamura, Physica A , 2006, 362(1): 42 doi: 10.1016/j.physa.2005.09.015
29
F. Corberi, G. Gonnella, and A. Lamura, Phys. Rev. Lett. , 1998, 81(18): 3852 doi: 10.1103/PhysRevLett.81.3852
30
A. Tiribocchi, N. Stella, G. Gonnella, and A. Lamura, Phys. Rev. E , 2009, 80(2): 026701 doi: 10.1103/PhysRevE.80.026701
31
V. Sofonea and K. R. Mecke, Eur. Phys. J. B , 1999, 8(1): 99 doi: 10.1007/s100510050672
32
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E , 2004, 70(4): 046702 doi: 10.1103/PhysRevE.70.046702
33
A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Comm. Comp. Phys. , 2010, 7(2): 350
34
R. Zhang and H. Chen, Phys. Rev. E , 2003, 67(6): 066711 doi: 10.1103/PhysRevE.67.066711
35
P. Yuan and L. Schaefer, J. Fluid Eng. , 2006, 128(1): 142 doi: 10.1115/1.2137343
36
G. Gonnella, A. Lamura, A. Piscitelli, and A. Tiribocchi, Phys. Rev. E , 2010, 82(4): 046302 doi: 10.1103/PhysRevE.82.046302
37
G. Gonnella, A. Lamura, and A. Tiribocchi, Phil. Trans. R. Soc. A , 2011, 369(1945): 2592
38
A. Márkus and G. Házi, Phys. Rev. E , 2011, 83(4): 046705 doi: 10.1103/PhysRevE.83.046705
39
M. Sbragaglia, R. Benzi, L. Biferale, X. Shan, H. Chen, and S. Succi, J. Fluid Mech. , 2009, 628: 299 doi: 10.1017/S002211200900665X
40
T. Seta, K. Kono, and S. Chen, Int. J. Mod. Phys. B , 2003, 17(1-2): 169 doi: 10.1142/S021797920301728X
41
G. Gonnella, A. Lamura, and V. Sofonea, Phys. Rev. E , 2007, 76(3): 036703 doi: 10.1103/PhysRevE.76.036703
42
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E , 2011, 84(4): 046715 doi: 10.1103/PhysRevE.84.046715
43
Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett. , 2012, 97(4): 44002 doi: 10.1209/0295-5075/97/44002
44
H. Huang, D. T. Thorne, M. G. Schaap, and M. C. Sukop, Phys. Rev. E , 2007, 76(6): 066701 doi: 10.1103/PhysRevE.76.066701
45
H. Huang, M. Krafczyk, and X. Lu, Phys. Rev. E , 2011, 84(4): 046710 doi: 10.1103/PhysRevE.84.046710
46
L. Zheng, B. Shi, and Z. Guo, Phys. Rev. E , 2008, 78(2): 026705 doi: 10.1103/PhysRevE.78.026705
47
M. Watari and M. Tsutahara, Phys. Rev. E , 2003, 67(3): 036306 doi: 10.1103/PhysRevE.67.036306
48
A. Onuki, Phys. Rev. Lett. , 2005, 94(5): 054501 doi: 10.1103/PhysRevLett.94.054501
49
A. Onuki, Phys. Rev. E , 2007, 75(3): 036304 doi: 10.1103/PhysRevE.75.036304
50
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett. , 2010, 90(5): 54003 doi: 10.1209/0295-5075/90/54003
51
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, London : Springer-Verlag , 1987
52
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Bristol : Adam Hilger , 1991 doi: 10.1887/0750301171
53
J. P. Boyd, Chebyshev and Fourier Spectral Methods, New York : Dover Publications , 2000
54
S. Orszag, Phys. Rev. Lett. , 1971, 26(18): 1100 doi: 10.1103/PhysRevLett.26.1100
55
H. Hadwiger, Math. Z. , 1959, 71: 124 doi: 10.1007/BF01181393
56
G. Gonnella1, A. Lamura, and A. Piscitelli, J. Phys. A , 2008, 41(10): 105001
57
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E , 2011, 83(5): 056704 doi: 10.1103/PhysRevE.83.056704
58
L. F. Wang, W. H. Ye, Z. F. Fan, and Y. J. Li, Europhys. Lett. , 2010, 90(1): 15001 doi: 10.1209/0295-5075/90/15001
59
W. H. Ye, L. F. Wang, and X. T. He, Phys. Plasmas , 2010, 17(12): 122704 doi: 10.1063/1.3497006
60
W. H. Ye, L. F. Wang, C. Xue, Z. F. Fan, and X. T. He, Phys. Plasmas , 2011, 18(2): 022704 doi: 10.1063/1.3552106
Viewed
Full text
Abstract
Cited
Shared
Discussed