Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2012, Vol. 7 Issue (4): 449-452   https://doi.org/10.1007/s11467-012-0253-0
  RESEARCH ARTICLE 本期目录
Andreev reflection and tunneling spectrum on metal–superconductor–metal junctions
Andreev reflection and tunneling spectrum on metal–superconductor–metal junctions
Jiajun Ouyang, W. LiMing(), Liangbin Hu
Department of Physics, and Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
 全文: PDF(497 KB)   HTML
Abstract

The tunneling spectrum of an electron and a hole in metal–superconductor–metal junctions is computed using the Blonder–Tinkham–Klapwijk method. The incident and the outgoing currents finally balance each other by an interface charge inside the superconductor and metal junction. The present computation shows a more abundant structure compared to that on a metal–superconductor junction, such as the resonance at bias voltages above the energy gap of the superconductor. The density of the interface charge shows a quantum-like oscillation.

Key wordsAndreev reflection    superconductivity
收稿日期: 2011-11-06      出版日期: 2012-08-01
Corresponding Author(s): LiMing W.,Email:wliming@scnu.edu.cn   
 引用本文:   
. Andreev reflection and tunneling spectrum on metal–superconductor–metal junctions[J]. Frontiers of Physics, 2012, 7(4): 449-452.
Jiajun Ouyang, W. LiMing, Liangbin Hu. Andreev reflection and tunneling spectrum on metal–superconductor–metal junctions. Front. Phys. , 2012, 7(4): 449-452.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-012-0253-0
https://academic.hep.com.cn/fop/CN/Y2012/V7/I4/449
1 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B , 1982, 25(7): 4515
doi: 10.1103/PhysRevB.25.4515
2 S. Kashiwaya, Y. Tanaka, M. Koyanagi, and K. Kajimura, Phys. Rev. B , 1996, 53(5): 2667
doi: 10.1103/PhysRevB.53.2667
3 K. Y. Yang, K. Huang, W. Q. Chen, T. M. Rice, and F. C. Zhang, Phys. Rev. Lett. , 2010, 105(16): 167004
doi: 10.1103/PhysRevLett.105.167004
4 Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. , 1995, 74(17): 3451
doi: 10.1103/PhysRevLett.74.3451
5 Z. C. Dong, D. Y. Xing, Z. D. Wang, Z. M. Zheng, and J. M. Dong, Phys. Rev. B , 2001, 63(14): 144520
doi: 10.1103/PhysRevB.63.144520
6 J. W. Wei, Z. C. Dong, and D. Y. Xing, Cryogenics and Superconductivity , 2003, 31(2): 41
7 Z. C. Dong, R. Shen, Z. M. Zheng, D. Y. Xing, and Z. D. Wang, Phys. Rev. B , 2003, 67(13): 134515
doi: 10.1103/PhysRevB.67.134515
8 M. Büttiker, Phys. Rev. Lett. , 1986, 57(14): 1761
doi: 10.1103/PhysRevLett.57.1761
9 P. G. de Gennes, Superconductivity of Metals and Alloys, New York: Benjamin, 1996
10 W. J. Tomasch, Phys. Rev. Lett. , 1956, 15(16): 672
doi: 10.1103/PhysRevLett.15.672
11 J. M. Rowell and W. L. McMillan, Phys. Rev. Lett. , 1966, 16(11): 453
doi: 10.1103/PhysRevLett.16.453
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed