Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (1): 20-26   https://doi.org/10.1007/s11467-013-0284-1
  RESEARCH ARTICLE 本期目录
Demonstration of eight-partite two-diamond shape cluster state for continuous variables
Demonstration of eight-partite two-diamond shape cluster state for continuous variables
Xiao-Long Su, Shu-Hong Hao, Ya-Ping Zhao, Xiao-Wei Deng, Xiao-Jun Jia, Chang-De Xie(), Kun-Chi Peng
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
 全文: PDF(726 KB)   HTML
Abstract

Multipartite entangled state is the basic resource for implementing quantum information networks and quantum computation. In this paper, we present the experimental demonstration of the eightpartite two-diamond shape cluster states for continuous variables, which consist of eight spatially separated and entangled optical modes. Eight resource squeezed states of light with classical coherence are produced by four nondegenerate optical parametric amplifiers and then they are transformed to the eight-partite two-diamond shape cluster states by a specially designed linear optical network. Since the spatially separated multipartite entangled state can be prepared off-line, it can be conveniently applied in the future quantum technology.

Key wordsquantum computation    continuous variable    cluster state    squeezed state
收稿日期: 2013-01-02      出版日期: 2013-02-01
Corresponding Author(s): Xie Chang-De,Email:changde@sxu.edu.cn   
 引用本文:   
. Demonstration of eight-partite two-diamond shape cluster state for continuous variables[J]. Frontiers of Physics, 2013, 8(1): 20-26.
Xiao-Long Su, Shu-Hong Hao, Ya-Ping Zhao, Xiao-Wei Deng, Xiao-Jun Jia, Chang-De Xie, Kun-Chi Peng. Demonstration of eight-partite two-diamond shape cluster state for continuous variables. Front. Phys. , 2013, 8(1): 20-26.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0284-1
https://academic.hep.com.cn/fop/CN/Y2013/V8/I1/20
1 M. A. Nielsen and I. L. Chuang, Quantum Comput ation and Quantum Information , Cambridge: Cambridge University Press, 2000
2 S. L. Braunstein and P. van Loock, Rev. Mod. Phys. , 2005, 77(2): 513
doi: 10.1103/RevModPhys.77.513
3 R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. , 2001, 86(22): 5188
doi: 10.1103/PhysRevLett.86.5188
4 N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett. , 2006, 97(11): 110501
doi: 10.1103/PhysRevLett.97.110501
5 P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature , 2005, 434(7030): 169
doi: 10.1038/nature03347
6 K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J.W. Pan, Phys. Rev. Lett. , 2007, 99(12): 120503
doi: 10.1103/PhysRevLett.99.120503
7 W. Gao, P. Xu, X. Yao, O. Gühne, A. Cabello, C. Y. Lu, C. Z. Peng, Z. B. Chen, and J. W. Pan, Phys. Rev. Lett. , 2010, 104(2): 020501
doi: 10.1103/PhysRevLett.104.020501
8 P. van Loock, J. Opt. Soc. Am. B , 2007, 24: 340
doi: 10.1364/JOSAB.24.000340
9 A. Tan, C. Xie, and K. Peng, Phys. Rev. A , 2009, 79(4): 042338
doi: 10.1103/PhysRevA.79.042338
10 M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, Phys. Rev. A , 2009, 79(6): 062318
doi: 10.1103/PhysRevA.79.062318
11 Y. Miwa, J. I. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. A , 2009, 80(5): 050303(R)
doi: 10.1103/PhysRevA.80.050303
12 Y. Wang, X. Su, H. Shen, A. Tan, C. Xie, and K. Peng, Phys. Rev. A , 2010, 81(2): 022311
doi: 10.1103/PhysRevA.81.022311
13 R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A. Politi, J. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. Lett. , 2011, 106(24): 240504
doi: 10.1103/PhysRevLett.106.240504
14 R. Ukai, S. Yokoyama, J. I. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. Lett. , 2011, 107(25): 250501
doi: 10.1103/PhysRevLett.107.250501
15 X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett. , 2007, 98(7): 070502
doi: 10.1103/PhysRevLett.98.070502
16 M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, Phys. Rev. A , 2008, 78(1): 012301
doi: 10.1103/PhysRevA.78.012301
17 A. Tan, Y. Wang, X. Jin, X. Su, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. A , 2008, 78(1): 013828
doi: 10.1103/PhysRevA.78.013828
18 M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, Phys. Rev. Lett. , 2011, 107(3): 030505
doi: 10.1103/PhysRevLett.107.030505
19 X. Su, Y. Zhao, S. Hao, X. Jia, C. Xie, and K. Peng, Opt. Lett. , 2012, 37(24): 5178
doi: 10.1364/OL.37.005178
20 P. van Loock and A. Furusawa, Phys. Rev. A , 2003, 67(5): 052315
doi: 10.1103/PhysRevA.67.052315
21 J. Zhang and S. L. Braunstein, Phys. Rev. A , 2006, 73(3): 032318
doi: 10.1103/PhysRevA.73.032318
22 P. van Loock, C.Weedbrook, and M. Gu, Phys. Rev. A , 2007, 76(3): 032321
doi: 10.1103/PhysRevA.76.032321
23 N. C. Menicucci, S. T. Flammia, and P. van Loock, Phys. Rev. A , 2011, 83(4): 042335
doi: 10.1103/PhysRevA.83.042335
24 Y. Wang, Y. Zheng, C. Xie, and K. Peng, IEEE J. Quantum Electron. , 2011, 47(7): 1006
doi: 10.1109/JQE.2011.2138681
25 X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett. , 2002, 88(4): 047904
doi: 10.1103/PhysRevLett.88.047904
26 Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, Opt. Express , 2010, 18(6): 6149
doi: 10.1364/OE.18.006149
27 Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, and K. Peng, Phys. Rev. A , 2000, 62(2): 023813
doi: 10.1103/PhysRevA.62.023813
28 T. Eberle, S. Steinlechner, J. Bauchrowitz, V. H?ndchen, H. Vahlbruch, M.Mehmet, H. Müller-Ebhardt, and R. Schnabel, Phys. Rev. Lett. , 2010, 104(25): 251102
doi: 10.1103/PhysRevLett.104.251102
29 Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, and K. Peng, Phys. Rev. A , 2012, 85(4): 040305(R)
doi: 10.1103/PhysRevA.85.040305
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed