Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (4): 412-437   https://doi.org/10.1007/s11467-013-0349-1
  REPORT 本期目录
Introduction to the CDEX experiment
Introduction to the CDEX experiment
Ke-Jun Kang1, Jian-Ping Cheng1, Jin Li1, Yuan-Jing Li1, Qian Yue1, Yang Bai3, Yong Bi5, Jian-Ping Chang4, Nan Chen1, Ning Chen1, Qing-Hao Chen1, Yun-Hua Chen6, Yo-Chun Chuang7, Zhi Deng1, Qiang Du1, Hui Gong1, Xi-Qing Hao1, Hong-Jian He1, Qing-Ju He1, Xin-Hui Hu3, Han-Xiong Huang2, Teng-Rui Huang7, Hao Jiang1, Hau-Bin Li7, Jian-Min Li1, Jun Li4, Xia Li2, Xin-Ying Li3, Xue-Qian Li3(), Yu-Lan Li1, Heng-Ye Liao7, Fong-Kay Lin7, Shin-Ted Lin7, Shu-Kui Liu5, Ya-Bin Liu1, Lan-Chun Lü1, Hao Ma1, Shao-Ji Mao4, Jian-Qiang Qin1, Jie Ren2, Jing Ren1, Xi-Chao Ruan2, Man-Bin Shen6, Man-Bin Shen6, Lakhwinder Simgh7,8, Manoj Kumar Singh7,8, Arun Kumar Soma7,8, Jian Su1, Chang-Jian Tang5, Chao-Hsiung Tseng7, Ji-Min Wang6, Li Wang5, Qing Wang1(), Tsz-King Henry Wong7(), Xu-Feng Wang1, Shi-Yong Wu6, Wei Wu3, Yu-Cheng Wu1, Zhong-Zhi Xianyu1, Hao-Yang Xing5, Xun-Jie Xu1, Yin Xu3, Tao Xue1, Li-Tao Yang1, Song-Wei Yang7, Nan Yi1, Chun-Xu Yu3, Hao Yu1, Xun-Zhen Yu5, Xiong-Hui Zeng6, Zhi Zeng1, Lan Zhang4, Yun-Hua Zhang6, Ming-Gang Zhao3, Wei Zhao1, Su-Ning Zhong3, Jin Zhou6, Zu-Ying Zhou2, Jing-Jun Zhu5, Wei-Bin Zhu4, Xue-Zhou Zhu1, Zhong-Hua Zhu6
1. Department of Engineering Physics, Tsinghua University, Beijing 100084; 2. China Institute of Atomic Energy, Beijing 102413; 3. School of Physics, Nankai University, Tianjin 300071; 4. NUCTECH Company, Beijing 100084; 5. Department of Physics, Sichuan University, Chengdu 610065; 6. Yalongjiang Hydropower Development Company, Chengdu 627450; 7. Institute of Physics, Academia Sinica, Taipei 11529; 8. Department of Physics, Banaras Hindu University, Varanasi 221005
 全文: PDF(2018 KB)   HTML
Abstract

It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kgPCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.

Key wordsChina Dark matter EXperiment (CDEX)    dark matter    poit-contact germanium detector    China Jinping underground Laboratory (CJPL)
收稿日期: 2013-03-11      出版日期: 2013-08-01
Corresponding Author(s): Li Xue-Qian,Email:lixq@nankai.edu.cn; Wang Qing,Email:wangq@mail.tsinghua.edu.cn; Wong Tsz-King Henry,Email:Participate as TEXONO members.   
 引用本文:   
. Introduction to the CDEX experiment[J]. Frontiers of Physics, 2013, 8(4): 412-437.
Ke-Jun Kang, Jian-Ping Cheng, Jin Li, Yuan-Jing Li, Qian Yue, Yang Bai, Yong Bi, Jian-Ping Chang, Nan Chen, Ning Chen, Qing-Hao Chen, Yun-Hua Chen, Yo-Chun Chuang, Zhi Deng, Qiang Du, Hui Gong, Xi-Qing Hao, Hong-Jian He, Qing-Ju He, Xin-Hui Hu, Han-Xiong Huang, Teng-Rui Huang, Hao Jiang, Hau-Bin Li, Jian-Min Li, Jun Li, Xia Li, Xin-Ying Li, Xue-Qian Li, Yu-Lan Li, Heng-Ye Liao, Fong-Kay Lin, Shin-Ted Lin, Shu-Kui Liu, Ya-Bin Liu, Lan-Chun Lü, Hao Ma, Shao-Ji Mao, Jian-Qiang Qin, Jie Ren, Jing Ren, Xi-Chao Ruan, Man-Bin Shen, Man-Bin Shen, Lakhwinder Simgh, Manoj Kumar Singh, Arun Kumar Soma, Jian Su, Chang-Jian Tang, Chao-Hsiung Tseng, Ji-Min Wang, Li Wang, Qing Wang, Tsz-King Henry Wong, Xu-Feng Wang, Shi-Yong Wu, Wei Wu, Yu-Cheng Wu, Zhong-Zhi Xianyu, Hao-Yang Xing, Xun-Jie Xu, Yin Xu, Tao Xue, Li-Tao Yang, Song-Wei Yang, Nan Yi, Chun-Xu Yu, Hao Yu, Xun-Zhen Yu, Xiong-Hui Zeng, Zhi Zeng, Lan Zhang, Yun-Hua Zhang, Ming-Gang Zhao, Wei Zhao, Su-Ning Zhong, Jin Zhou, Zu-Ying Zhou, Jing-Jun Zhu, Wei-Bin Zhu, Xue-Zhou Zhu, Zhong-Hua Zhu. Introduction to the CDEX experiment. Front. Phys. , 2013, 8(4): 412-437.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0349-1
https://academic.hep.com.cn/fop/CN/Y2013/V8/I4/412
1 F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. , 1937, 86: 217
doi: 10.1086/143864
1 F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. , 1937, 86: 217
doi: 10.1086/143864
2 V. Rubin and W. K. J. Ford, Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J. , 1970, 159: 379
doi: 10.1086/150317
2 V. Rubin and W. K. J. Ford, Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J. , 1970, 159: 379
doi: 10.1086/150317
3 V. Rubin, W. K. J. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R= 4 kpc/ to UGC 2885 /R= 122 kpc/, Astrophys. J. , 1980, 238: 471
doi: 10.1086/158003
3 V. Rubin, W. K. J. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R= 4 kpc/ to UGC 2885 /R= 122 kpc/, Astrophys. J. , 1980, 238: 471
doi: 10.1086/158003
4 V. Rubin, D. Burstein, W. K. J. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J. , 1985, 289: 81
doi: 10.1086/162866
4 V. Rubin, D. Burstein, W. K. J. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J. , 1985, 289: 81
doi: 10.1086/162866
5 D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. , 2006, 648(2): L109
doi: 10.1086/508162
6 J. Beringer, . [Particle Data Group], The review of particle physics, Phys. Rev. D , 2012, 86: 010001
doi: 10.1103/PhysRevD.86.010001
6 J. Beringer, . [Particle Data Group], The review of particle physics, Phys. Rev. D , 2012, 86: 010001
doi: 10.1103/PhysRevD.86.010001
7 Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters , arXiv: 1303.5076v1 , 2013
7 Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters , arXiv: 1303.5076v1 , 2013
8 V. Trimble, Existence and nature of dark matter in the universe, Annu. Rev. Astron. Astrophys. , 1987, 25(1): 425
doi: 10.1146/annurev.aa.25.090187.002233
9 G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep. , 1996, 267(5–6): 195
doi: 10.1016/0370-1573(95)00058-5
10 L. Bergstrom, Dark matter candidates, New J. Phys. , 2009, 11(10): 105006
doi: 10.1088/1367-2630/11/10/105006
11 J. L. Feng, Dark matter candidates from particle physics and methods of detection, arXiv: 1003.0904 , 2010
11 J. L. Feng, Dark matter candidates from particle physics and methods of detection, arXiv: 1003.0904 , 2010
12 R. J. Gaitskell, Direct detection of dark matter, Ann. Rev. Nucl. Part. Sci. , 2004, 54(1): 315
doi: 10.1146/annurev.nucl.54.070103.181244
13 X.G. He, H. C. Tsai, T. Li, and X. Q. Li, Scalar darkmatter effects in Higgs and top quark decays, Mod. Phys. Lett. A , 2007, 22(25n28): 2121
14 X. He, T. Li, X. Q. Li, J. Tandean, and H. C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D , 2009, 79(2): 023521
doi: 10.1103/PhysRevD.79.023521
15 Beylyaev, M. T. Frandsen, S. Sarkar, and F. Sannino, Mixed dark matter from Technicolor, Phys. Rev. D , 2011, 83(1): 015007, and the references therein
doi: 10.1103/PhysRevD.83.015007
16 H. P. An, S. L. Chen, R. N. Mohapatra, S. Nussinov, and Y. Zhang, Energy dependence of direct detection cross-section for asymmetric mirror dark matter, Phys. Rev. D , 2010, 82: 023533, arXiv: 1004.3296
16 H. P. An, S. L. Chen, R. N. Mohapatra, S. Nussinov, and Y. Zhang, Energy dependence of direct detection cross-section for asymmetric mirror dark matter, Phys. Rev. D , 2010, 82: 023533, arXiv: 1004.3296
17 J.-W. Cui, H.-J. He, L.-C. Lu, and F.-R. Yin, Spontaneous mirror parity violation, common origin of matter and dark matter, and the LHC Signatures, Phys. Rev. D , 2012, 85: 096003, arXiv: 1110.6893
17 J.-W. Cui, H.-J. He, L.-C. Lu, and F.-R. Yin, Spontaneous mirror parity violation, common origin of matter and dark matter, and the LHC Signatures, Phys. Rev. D , 2012, 85: 096003, arXiv: 1110.6893
18 M. Gilloz, A. von Manteuffel, P. Schwaller, and D. Wyler, The little skyrmion: new dark matter for little Higgs models, J. High Energy Phys. , 2011, 1103: 48, and references therein, arXiv: 1012.5288v2
18 M. Gilloz, A. von Manteuffel, P. Schwaller, and D. Wyler, The little skyrmion: new dark matter for little Higgs models, J. High Energy Phys. , 2011, 1103: 48, and references therein, arXiv: 1012.5288v2
19 J. Lavalle, J. M. Alimi, and A. Fu?zfa, Cosmic ray positron excess: Is the dark matter solution a good bet? AIP Conf. Proc. , 2010, 24: 398
19 J. Lavalle, J. M. Alimi, and A. Fu?zfa, Cosmic ray positron excess: Is the dark matter solution a good bet? AIP Conf. Proc. , 2010, 24: 398
20 R. Yang, J. Chang, and J. Wu, A possible explanation for the electron/positron excess of ATIC/PAMELA, Res. Astro. Astrophys. , 2010, 10(1): 39, and references therein
21 M. Amenomori, . [Tibet AS-gamma Collaboration], Cosmic-ray energy spectrum around the knee observed with the Tibet air-shower experiment, Astrophys. Space Sci. Trans. , 2011, 7(1): 15
22 M. Aguilar, . [AMS Collaboration], First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV, Phys. Rev. Lett. , 2013, 110(14): 141102
23 K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’ngelo, H. L. He, A. Incicchitti, H. H. Kuang, J. M. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, and Z. P. Ye, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C , 2008, 56(3): 333
24 K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’ngelo, H. L. He, A. Incicchitti, H. H. Kuang, X. H. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, R. G. Wang, and Z. P. Ye, New results from DAMA/LIBRA, Eur. Phys. J. C , 2010, 67(1–2): 39
25 C. Aalseth, P. S. Barbeau, N. S. Bowden, B. Cabrera Palmer, , Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. , 2011, 106(13): 131301
26 P. Brink, Z. Ahmed, D. S. Akerib, C. N. Bailey, , The cryogenic dark matter search (CDMS): Present status and future, AIP Conf. Proc. , 2009, 1182: 260
doi: 10.1063/1.3293795
26 P. Brink, Z. Ahmed, D. S. Akerib, C. N. Bailey, , The cryogenic dark matter search (CDMS): Present status and future, AIP Conf. Proc. , 2009, 1182: 260
doi: 10.1063/1.3293795
27 G. Angloher, . [CRESST Collaboration], Results from 730 kg days of the CRESST-II dark matter search, arXiv: 1109.0702 , 2011
27 G. Angloher, . [CRESST Collaboration], Results from 730 kg days of the CRESST-II dark matter search, arXiv: 1109.0702 , 2011
28 J. Angle, . [XENON10 Collaboration], Search for light dark matter in XENON10 data, Phys. Rev. Lett. , 2011, 107: 051301
doi: 10.1103/PhysRevLett.107.051301 pmid:21867059
28 J. Angle, . [XENON10 Collaboration], Search for light dark matter in XENON10 data, Phys. Rev. Lett. , 2011, 107: 051301
doi: 10.1103/PhysRevLett.107.051301 pmid:21867059
29 R. Agnese, . [CDMS Collaboration], Dark matter search results using the silicon detectors of CDMS II, arXiv: 1304.4279v2, 2013
29 R. Agnese, . [CDMS Collaboration], Dark matter search results using the silicon detectors of CDMS II, arXiv: 1304.4279v2, 2013
30 M. T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, arXiv: 1304.6066v1 , 2013
30 M. T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, arXiv: 1304.6066v1 , 2013
31 X. G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at LHC, and Darkon models, arXiv: 1304.6058v1 , 2013
31 X. G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at LHC, and Darkon models, arXiv: 1304.6058v1 , 2013
32 E. Aprile, . [XENON100 Collaboration], Dark matter results from 225 live days of XENON100 data, arXiv: 1207.5988v2 , 2013
32 E. Aprile, . [XENON100 Collaboration], Dark matter results from 225 live days of XENON100 data, arXiv: 1207.5988v2 , 2013
33 J. Angle, . [XENON Collaboration], Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. , 2008, 101(9): 091301
doi: 10.1103/PhysRevLett.101.091301
34 M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D , 1993, 48(12): 5519
doi: 10.1103/PhysRevD.48.5519 pmid:10016218
35 G. Griest, Cross-sections, relic abundance, and detection rates for neutralino dark matter, Phys. Rev. D , 1988, 15(8): 2357
doi: 10.1103/PhysRevD.38.2357
36 C. L. Shan, Effects of residue background events in direct dark matter detection experiments on the estimation of the spin-independent WIMP-nucleon coupling, arXiv: 1103.4049v2 , 2011
36 C. L. Shan, Effects of residue background events in direct dark matter detection experiments on the estimation of the spin-independent WIMP-nucleon coupling, arXiv: 1103.4049v2 , 2011
37 C. L. Shan, Estimating the spin-independent WIMP-nucleon coupling from direct dark matter detection data, arXiv: 1103.0481v2 , 2011
37 C. L. Shan, Estimating the spin-independent WIMP-nucleon coupling from direct dark matter detection data, arXiv: 1103.0481v2 , 2011
38 V. Barger, W.-Y. Keung, and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D , 2008, 78: 056007, arXiv: 0806.1962
doi: 10.1103/PhysRevD.78.056007
38 V. Barger, W.-Y. Keung, and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D , 2008, 78: 056007, arXiv: 0806.1962
doi: 10.1103/PhysRevD.78.056007
39 Y. Tzeng and T. T. S. Kuo, Dark matter-nucleus scattering, 14th International Conference on Particles and Nuclei (PANIC 96): C96-05-22, 479
39 Y. Tzeng and T. T. S. Kuo, Dark matter-nucleus scattering, 14th International Conference on Particles and Nuclei (PANIC 96): C96-05-22, 479
41 M. T. Ressell and D. J. Dean, Spin-dependent neutralinonucleus scattering for A127 nuclei, Phys. Rev. C , 1997, 56(1): 535
doi: 10.1103/PhysRevC.56.535
42 J. Engel, S. Pittel, and P. Vogel, Nuclear physics of dark matter detection, Int. J. Mod. Phys. E , 1992, 1: 1
doi: 10.1142/S0218301392000023
42 J. Engel, S. Pittel, and P. Vogel, Nuclear physics of dark matter detection, Int. J. Mod. Phys. E , 1992, 1: 1
doi: 10.1142/S0218301392000023
43 J. Engel, Nuclear form factors for the scattering of weakly interacting massive particles, Phys. Lett. B , 1991, 264(1–2): 114
doi: 10.1016/0370-2693(91)90712-Y
44 Q. Yue, J. P. Cheng, Y. J. Li, J. Li, and Z. J. Wang, Detection of WIMPs using low threshold HPGe detector, High Energy Physics and Nuclear Physics , 2004, 28(8): 877 (in Chinese)
45 X. Li, Q. Yue, Y. J. Li, J. Li, ., Status of ULE-HPGe detector experiment for dark matter search, High Energy Physics and Nuclear Physics , 2007, 31(6): 564 (in Chinese)
46 S. T. Lin, . [TEXONO Collaboration], New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV, Phys. Rev. D , 2009, 79(6): 061101(R)
doi: 10.1103/PhysRevD.79.061101
48 C. E. Aalseth, . [CoGeNT Collaboration], Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. , 2011, 107(14): 141301
doi: 10.1103/PhysRevLett.107.141301
49 Majorana Collaboration, http://www.npl.washington.edu/ majorana/
49 Majorana Collaboration, http://www.npl.washington.edu/ majorana/
50 GERDA Collaboration, http://www.mpi-hd.mpg.de/gerda/
50 GERDA Collaboration, http://www.mpi-hd.mpg.de/gerda/
51 K. J. Kang, J. P. Cheng, Y. H. Chen, Y. J. Li, M. B. Shen, S. Y. Wu, and Q. Yue, Status and prospects of a deep underground laboratory in China, J. Phys.: Conf. Ser. , 2010, 203(1): 012028
doi: 10.1088/1742-6596/203/1/012028
52 D. Normile, Chinese scientists hope to make deepest, darkest dreams come true, Science , 2009, 324(5932): 1246
doi: 10.1126/science.324_1246 pmid:19498133
53 G. Heusser, Low-radioactivity background techniques, Ann. Rev. Nucl. Part. Sci. , 1995, 45(1): 543
doi: 10.1146/annurev.ns.45.120195.002551
54 Canberra, http://www.canberra.com/
54 Canberra, http://www.canberra.com/
55 Chinalco Luoyang Copper Co, Ltd, http://www.lycopper.cn
55 Chinalco Luoyang Copper Co, Ltd, http://www.lycopper.cn
56 ORTEC, http://www.ortec-online.com
56 ORTEC, http://www.ortec-online.com
57 Y. C. Wu, . [CDEX Collaboration], Measurement of cosmic ray flux in China Jinping underground laboratory, arXiv: 1305.0899 , 2013
57 Y. C. Wu, . [CDEX Collaboration], Measurement of cosmic ray flux in China Jinping underground laboratory, arXiv: 1305.0899 , 2013
58 Saphymo, http://saphymo.de
58 Saphymo, http://saphymo.de
59 P. N. Luke, F. S. Goulding, N. W. Madden, and R. H. Pehl, Low capacitance large volume shaped-.eld germanium detector, IEEE Trans. Nucl. Sci. , 1989, 36(1): 926
doi: 10.1109/23.34577
60 P. S. Barbeau, J. I. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, J. Cosmol. Astropart. Phys. , 2007, 09: 009
60 P. S. Barbeau, J. I. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, J. Cosmol. Astropart. Phys. , 2007, 09: 009
61 AMPTEK, http://www.amptek.com
61 AMPTEK, http://www.amptek.com
62 TEK, http://www.tek.com
62 TEK, http://www.tek.com
63 CDMS Collaboration, http://cdms.berkeley.edu
63 CDMS Collaboration, http://cdms.berkeley.edu
64 XENON Collaboration, http://xenon.astro.columbia.edu
64 XENON Collaboration, http://xenon.astro.columbia.edu
65 CRESST Collaboration, http://www.cresst.de
65 CRESST Collaboration, http://www.cresst.de
67 M. G. Marino, Dark matter physics with P-type pointcontact germanium detectors: Extending the physics reach of the Majorana experiment, Ph.D. Dissertation, University of Washington , 2010
67 M. G. Marino, Dark matter physics with P-type pointcontact germanium detectors: Extending the physics reach of the Majorana experiment, Ph.D. Dissertation, University of Washington , 2010
68 From a talk given by J. F. Wilkerson in Tsinghua University in 2011
68 From a talk given by J. F. Wilkerson in Tsinghua University in 2011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed