Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (1): 98-112   https://doi.org/10.1007/s11467-013-0358-0
  本期目录
Mysteries of Rik = 0: A novel paradigm in Einstein’s theory of gravitation
Mysteries of Rik = 0: A novel paradigm in Einstein’s theory of gravitation
Ram Gopal Vishwakarma()
Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas, C.P. 98068, Zacatecas, ZAC, Mexico
 全文: PDF(349 KB)   HTML
Abstract

Despite a century-long effort, a proper energy-stress tensor of the gravitational field, could not have been discovered. Furthermore, it has been discovered recently that the standard formulation of the energy-stress tensor of matter, suffers from various inconsistencies and paradoxes, concluding that the tensor is not consistent with the geometric formulation of gravitation [Astrophys. Space Sci., 2009, 321: 151; Astrophys. Space Sci., 2012, 340: 373]. This perhaps hints that a consistent theory of gravitation should not have any bearing on the energy-stress tensor. It is shown here that the so-called “vacuum” field equations Rik= 0 do not represent an empty spacetime, and the energy, momenta and angular momenta of the gravitational and the matter fields are revealed through the geometry, without including any formulation thereof in the field equations. Though, this novel discovery appears baffling and orthogonal to the usual understanding, is consistent with the observations at all scales, without requiring the hypothetical dark matter, dark energy or inflation. Moreover, the resulting theory circumvents the long-standing problems of the standard cosmology, besides explaining some unexplained puzzles.

Key wordsgeneral relativity and gravitation &ndash    fundamental problems and general formalism    cosmological observations
收稿日期: 2013-03-15      出版日期: 2014-02-01
Corresponding Author(s): Vishwakarma Ram Gopal,Email:vishwa@matematicas.reduaz.mx   
 引用本文:   
. Mysteries of Rik = 0: A novel paradigm in Einstein’s theory of gravitation[J]. Frontiers of Physics, 2014, 9(1): 98-112.
Ram Gopal Vishwakarma. Mysteries of Rik = 0: A novel paradigm in Einstein’s theory of gravitation. Front. Phys. , 2014, 9(1): 98-112.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0358-0
https://academic.hep.com.cn/fop/CN/Y2014/V9/I1/98
1 R. G. Vishwakarma, Gravity of Rμν = 0: A new paradigm in GR, to appear in Open Astron. J., arXiv: 1206.2795 , 2012
2 R. G. Vishwakarma, Mysteries of the geometrization of gravitation, arXiv: 1206.5789 , 2012
3 R. G. Vishwakarma, Einstein’s gravity under pressure, Astrophys. Space Sci. , 2009, 321: 151
doi: 10.1007/s10509-009-0016-8
4 R. G. Vishwakarma, On the relativistic formulation of matter, Astrophys. Space Sci. , 2012, 340: 373
doi: 10.1007/s10509-012-1051-4
5 S. W. Hawking and G. F. R.Ellis, The Large Scale Structure of Spacetime, Cambridge: Cambridge University Press, 1973
doi: 10.1017/CBO9780511524646
6 E. Kasner, Geometrical theorems on Einstein’s cosmological equations, Am. J. Math. , 1921, 43: 217
doi: 10.2307/2370192
7 V. V. Narlikar and K. R. Karmarkar, A curious solution of Einstein’s field equations, Curr. Sci. , 1946, 3: 69
8 J. V. Narlikar, An Introduction to Cosmology, Cambridge: Cambridge University Press, 2002
9 S. Hawking and L. Milodinow, The Grand Design, Bantom Books, New York , 2010
10 E. Ayon-Beato, C. Martinez, R. Tronoso, and J. Zanelli, Gravitational Cheshire effect: Nonminimally coupled scalar fields may not curve spacetime, Phys. Rev. D , 2005, 71: 104037
doi: 10.1103/PhysRevD.71.104037
11 R. G. Vishwakarma, A curious explanation of some cosmological phenomena, Phys. Scripta , 2013, 05: 055901
doi: 10.1088/0031-8949/87/05/055901
12 A. Einstein, Relativity: The Special and the General Theory, 1955
13 S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons , 1972
14 J. M. M.Senovilla, New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity, Phys. Rev. Lett. , 1990, 64: 2219
doi: 10.1103/PhysRevLett.64.2219
15 N. Dadhich, L. K. Patel, and R. Tikekar, Singularity free spacetimes- I: Metric and fluid models, Pramana- J. Phys. , 1995, 44: 303
16 R. G. Vishwakarma, A dark energy model resulting from a Ricci symmetry revisited, Nuovo Cim. B , 2007, 122: 113
17 S. Perlmutter, ., Measurements of Ωand Λfrom 42 high-redshift supernovae, Astrophys. J. , 1999, 517: 565
doi: 10.1086/307221
18 R. G. Vishwakarma and J. V. Narlikar, A critique of supernova data analysis in cosmology, Res. Astron. Astrophys. , 2010, 10: 1195
doi: 10.1088/1674-4527/10/12/001
19 A. Riess, ., New Hubble Space Telescope discoveries of Type Ia supernovae at z>1: Narrowing constraints on the early behavior of dark energy, Astrophys. J. , 2007, 659: 98
doi: 10.1086/510378
20 D. O. Jones, , The discovery of the most distant known Type Ia supernova at redshift 1.914, Astrophys. J. , 2013, 768:166
doi: 10.1088/0004-637X/768/2/166
21 J. C. Jackson and M. Dodgson, Deceleration without dark matter, Mon. Not. R. Astron. Soc. , 1997, 285: 806
doi: 10.1093/mnras/285.4.806
22 L. I. Gurvits, Apparent milliarcsecond sizes of active galactic nuclei and the geometry of the Universe, Astrophys. J. , 1994, 425: 442
doi: 10.1086/173999
23 S. K. Banerjee and J. V. Narlikar, The quasi-steady state cosmology: A study of angular size against redshift, Mon. Not. R. Astron. Soc. , 1999, 307:73
doi: 10.1046/j.1365-8711.1999.02610.x
24 R. G. Vishwakarma, A study of angular size-redshift relation for models in which Λdecays as the energy density, Class. Quantum Grav. , 2000, 17:3833
doi: 10.1088/0264-9381/17/18/317
25 R. G. Vishwakarma and P. Singh, Can brane cosmology with a vanishing Λ explain the observations? Class. Quantum Grav. , 2003, 20: 2033
doi: 10.1088/0264-9381/20/11/306
26 L. I. Gurvits, K. I. Kellermann, and S. Frey, The “angular size- redshift” relation for compact radio structures in quasars and radio galaxies, Astron. Astrophys. , 1999, 342: 378
27 R. G. Vishwakarma, Consequences on variable lambda models from distant type Ia supernovae and compact radio sources, Class. Quantum Grav. , 2001, 18: 1159
doi: 10.1088/0264-9381/18/7/301
28 J. R. Mould, , The HST key project on the extragalactic distance scale XXVIII: Combining the constraints on the Hubble constant, Astrophys. J ., 2000, 529: 786
doi: 10.1086/308304
29 O. Y. Gnedin, O. Lahav, M. J. Rees, Do globular clusters time the Universe? arXiv: astro-ph/0108034 , 2001
30 R. Cayrel, , Measurement of stellar age from uranium decay, Nature , 2001, 409: 691
doi: 10.1038/35055507
31 D. Larson, , Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Power spectra and WMAP-derived parameters, Astrophys. J. Suppl. , 2011, 192: 16
doi: 10.1088/0067-0049/192/2/16
32 D. Mania and B. Ratra, Constraints on dark energy from H II starburst galaxy apparent magnitude versus redshift data, Phys. Lett. B , 2012, 715: 9
doi: 10.1016/j.physletb.2012.07.011
33 R. R. Siegel, , Towards a precision cosmology from starburst galaxies at z>2, Mon. Not. R. Astron. Soc. , 2005, 356: 1117
doi: 10.1111/j.1365-2966.2004.08539.x
34 L. P. Grishchuk, Duration of inflation and possible remnants of the preinflationary Universe, Phys. Rev. D , 1992, 45: 4717
doi: 10.1103/PhysRevD.45.4717
35 L. P. Grishchuk, Some uncomfortable thoughts on the nature of gravity, cosmology, and the early Universe, Space Sci. Rev. , 2009, 148: 315
doi: 10.1007/s11214-009-9509-6
36 C. Corda, Interferometric detection of gravitational waves: the definitive test for General Relativity, Int. J. Mod. Phys. D , 2009, 18: 2275
doi: 10.1142/S0218271809015904
37 R. G. Vishwakarma, Is the present expansion of the Universe really accelerating? Mon. Not. R. Astron. Soc . 2003, 345: 545
doi: 10.1046/j.1365-8711.2003.06960.x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed