Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (5): 585-589   https://doi.org/10.1007/s11467-013-0369-x
  RESEARCH ARTICLE 本期目录
Low frequency Whistler waves excited in fast magnetic reconnection processes
Low frequency Whistler waves excited in fast magnetic reconnection processes
Xiao-Gang Wang (王晓钢)1(), Qi-Bin Luan (栾其斌)2
1. State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China; 2. MOE Key Lab of Materials Modification by Beams, School of Physics and Opto-Eelectronic Technology, Dalian University of Technology, Dalian 116024, China
 全文: PDF(181 KB)   HTML
Abstract

Whistler waves generated in fast magnetic reconnection processes of collisionless high beta plasmas are reviewed in experiments and satellite observations, as well as in theory and simulation, and further studied in the two-fluid theory. It is found that low frequency whistler waves can be excited in the ion inertial range of the reconnection region. The wave is found right-handed polarized with a quadrupolar out-of-plane magnetic perturbation, in accord with satellite observations in the geomagnetosphere.

Key wordsWhistler waves    mode conversion    Hall MHD    magnetic reconnection
收稿日期: 2013-07-02      出版日期: 2013-10-01
Corresponding Author(s): Xiao-Gang Wang (王晓钢),Email:xgwang@pku.edu.cn   
 引用本文:   
. Low frequency Whistler waves excited in fast magnetic reconnection processes[J]. Frontiers of Physics, 2013, 8(5): 585-589.
Xiao-Gang Wang (王晓钢), Qi-Bin Luan (栾其斌). Low frequency Whistler waves excited in fast magnetic reconnection processes. Front. Phys. , 2013, 8(5): 585-589.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0369-x
https://academic.hep.com.cn/fop/CN/Y2013/V8/I5/585
1 D. A. Gurnett, L. A. Frank, and R. P. Lepping, Plasma waves in the distant magnetotail, J. Geophys. Res. , 1976, 81(34): 6059
doi: 10.1029/JA081i034p06059
2 J. M. Urrutia and R. L. Stenzel, Nonlinear penetration of whistler pulses into collisional plasmas via conductivity modifications, Phys. Rev. Lett. , 1991, 67(14): 1867
doi: 10.1103/PhysRevLett.67.1867
3 R. L. Stenzel, J. M. Urrutia, and C. L. Rousculp, Pulsed currents carried by whistlers (Part I): Excitation by magnetic antennas, Phys. Fluids B , 1993, 5(2): 325
doi: 10.1063/1.860517
4 R. L. Stenzel, J. M. Urrutia, and C. L. Rousculp, Pulsed currents carried by whistlers (Part IV): Electric fields and radiation excited by an electrode, Phys. Plasmas , 1995, 2(4): 1114
doi: 10.1063/1.871390
5 J. M. Urrutia, R. L. Stenzel, and C. L. Rousculp, Pulsed currents carried by whistlers (Part II): Excitation by biased electrodes, Phys. Plasmas , 1994, 1(5): 1432
doi: 10.1063/1.870692
6 J. M. Urrutia, R. L. Stenzel, and C. L. Rousculp, Pulsed currents carried by whistlers (Part III): Magnetic fields and currents excited by an electrode, Phys. Plasmas , 1995, 2(4): 1100
doi: 10.1063/1.871389
7 C. L. Rousculp, R. L. Stenzel, and J. M. Urrutia, Pulsed currents carried by whistlers (Part V): Detailed new results of magnetic antenna excitation, Phys. Plasmas , 1995, 2(11): 4083
doi: 10.1063/1.871031
8 Z. Zhu, P. Song, J. F. Drake, C. T. Russell, R. R. Anderson, D. A. Gurnett, K. W. Ogilvie, and R. J. Fitzenreiter, The relationship between ELF-VHF waves and magnetic shear at the dayside magnetopause, Geophys. Res. Lett. , 1996, 23(7): 773
doi: 10.1029/96GL00591
9 X. H. Deng and H. Matsumoto, Rapid magnetic reconnection in the Earth’s magnetosphere mediated by Whistler waves, Nature , 2001, 410(6828): 557
doi: 10.1038/35069018
10 W. M. Farrell, M. D. Desch, M. L. Kaiser, and K. Goetz, The dominance of electron plasma waves near a reconnection X-line region, Geophys. Res. Lett. , 2002, 29(19): 1902
doi: 10.1029/2002GL014662
11 X. H. Wei, J. B. Cao, G. C. Zhou, O. Santolik, H. Reme, I. Dandouras, N. Cornilleau-Wehrlin, E. Lucek, C. M. Carr, and A. Fazakerley, Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth’s magnetotail, J. Geophys. Res. , 2007, 112(A10): A10225
doi: 10.1029/2006JA011771
12 S. Y. Huang, M. Zhou, F. Sahraoui, X. H. Deng, Y. Pang, Z. G. Yuan, Q. Wei, J. F. Wang, and X. M. Zhou, Wave properties in the magnetic reconnection diffusion region with high B: Application of the k-filtering method to Cluster multispacecraft data, J. Geophys. Res. , 2010, 115(A12): A12211
doi: 10.1029/2010JA015335
13 M. A. Shay and J. F. Drake, The role of electron dissipation on the rate of collisionless magnetic reconnection, Geophys. Res. Lett. , 1998, 25(20): 3759
doi: 10.1029/1998GL900036
14 M. A. Shay, J. F. Drake, B. N. Rogers, and R. E. Denton, The scaling of collisionless, magnetic reconnection for large systems, Geophys. Res. Lett. , 1999, 26(14): 2163
doi: 10.1029/1999GL900481
15 M. A. Shay, J. F. Drake, B. N. Rogers, and R. E. Denton, Alfvénic collisionless magnetic reconnection and the Hall term, J. Geophys. Res. , 2001, 106(A3): A3759
doi: 10.1029/1999JA001007
16 X. G. Wang, A. Bhattacharjee, and Z. W. Ma, Collisionless reconnection: Effects of Hall current and electron pressure gradient, J. Geophys. Res. , 2000, 105(A12): A27633
doi: 10.1029/1999JA000357
17 B. N. Rogers, R. E. Denton, J. F. Drake, and M. A. Shay, Role of dispersive waves in collisionless magnetic reconnection, Phys. Rev. Lett. , 2001, 87(19): 195004
doi: 10.1103/PhysRevLett.87.195004
18 J. F. Drake, M. A. Shay, and M. Swisdak, The Hall fields and fast magnetic reconnection, Phys. Plasmas , 2008, 15(4): 042306
doi: 10.1063/1.2901194
19 A. Hasegawa and L. Chen, Kinetic processes in plasma heating by resonant mode conversion of Alfvén-wave, Phys. Fluids , 1976, 19: 1924
doi: 10.1063/1.861427
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed