Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (5): 475-490   https://doi.org/10.1007/s11467-013-0384-y
  REVIEW ARTICLE 本期目录
Optomechanical sensing with on-chip microcavities
Optomechanical sensing with on-chip microcavities
Yi-Wen Hu, Yun-Feng Xiao(), Yong-Chun Liu, Qihuang Gong()
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
 全文: PDF(682 KB)   HTML
Abstract

The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical microcavity research, that we are able to manipulate and utilize this coupling process. When a high Q microcavity couples to a mechanical resonator, they can consolidate into an optomechanical system. Benefitting from the unique characteristics offered by optomechanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanics, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.

Key wordsoptical microcavities    mechanical resonators    cavity optomechanics    optical sensing    integrated photonics
收稿日期: 2013-06-21      出版日期: 2013-10-01
Corresponding Author(s): Xiao Yun-Feng,Email:yfxiao@pku.edu.cn, www.phy.pku.edu.cn/~yfxiao/; Gong Qihuang,Email:qhgong@pku.edu.cn   
 引用本文:   
. Optomechanical sensing with on-chip microcavities[J]. Frontiers of Physics, 2013, 8(5): 475-490.
Yi-Wen Hu, Yun-Feng Xiao, Yong-Chun Liu, Qihuang Gong. Optomechanical sensing with on-chip microcavities. Front. Phys. , 2013, 8(5): 475-490.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0384-y
https://academic.hep.com.cn/fop/CN/Y2013/V8/I5/475
1 J. Kepler, De Cometis, 1619
2 Actually Kepler’s conjecture is not fully accurate. From the viewpoint of modern astronomy, the formation and deflection of comet tails are due to the forces from both radiation pressure and solar wind.
3 A. Ashkin, History of optical trapping and manipulation of small-neutral particle, atoms, and molecules, EEE J. Sel. Top. Quantum Electron. , 2000, 6(6): 841
doi: 10.1109/2944.902132
4 V. B. Braginsky and A. B. Manukin, Measurement of weak forces in physics experiments, Chicago: niversity of Chicago Press, 1977
5 K. J. Vahala, Optical microcavities, Nature , 2003, 424(6950): 839
doi: 10.1038/nature01939
6 J. Ma and M. L. Povinelli, Applications of optomechanical effects for on-chip manipulation of light signals, Curr. Opin. Solid State Mater. Sci. , 2012, 16(2): 82
doi: 10.1016/j.cossms.2011.12.001
7 H. Cai, K. Xu, A. Liu, Q. Fang, M. Yu, G. Lo, and D. Kwong, Nano-opto-mechanical actuator driven by gradient optical force, Appl. Phys. Lett. , 2012, 100(1): 013108
doi: 10.1063/1.3673854
8 X. Guo, C. L. Zou, X. F. Ren, F. W. Sun, and G. C. Guo, Broadband opto-mechanical phase shifter for hotonic integrated circuits, Appl. Phys. Lett. , 2012, 101(7): 071114
doi: 10.1063/1.4746761
9 T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express , 2007, 15(25): 17172
doi: 10.1364/OE.15.017172
10 T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science , 2008, 321(5893): 1172
doi: 10.1126/science.1156032
11 A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys. , 2010, 82(2): 1155
doi: 10.1103/RevModPhys.82.1155
12 P. Meystre, A short walk through quantum optomechanics, Annalen der Physik , 2013, 525(3): 215
doi: 10.1002/andp.201200226
13 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, arXiv: 1303.0733, 2013
14 D. Van Thourhout and J. Roels, Optomechanical device actuation through the optical gradient force, Nat. Photonics , 2010, 4(4): 211
doi: 10.1038/nphoton.2010.72
15 L. Atzori, A. Iera, and G. Morabito, The internet of things: A survey, Comput. Netw. , 2010, 54(15): 2787
doi: 10.1016/j.comnet.2010.05.010
16 A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics, CRC Press , 2009
17 D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature , 2003, 421(6926): 925
doi: 10.1038/nature01371
18 B. B. Li, Y. F. Xiao, C. L. Zou, X. F. Jiang, Y. C. Liu, F. W. Sun, Y. Li, and Q. Gong, Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators, Appl. Phys. Lett. , 2012, 100(2): 021108
doi: 10.1063/1.3675571
19 Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. Gong, High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization, Appl. Phys. Lett. , 2013, 102(22): 221108
doi: 10.1063/1.4809724
20 Y.-F. Xiao, X.-F. Jiang, Q.-F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, Tunneling-induced transparency in a chaotic microcavity, Laser & Photonics Reviews , 2013, 7(5): L51
doi: 10.1002/lpor.201300042
21 S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Whispering-gallery mode microdisk lasers, Appl. Phys. Lett. , 1992, 60:289
doi: 10.1063/1.106688
22 H. J. Moon, Y. T. Chough, and K. An, Cylindrical microcavity laser based on the evanescent-wave-coupled gain, Phys.Rev. Lett. , 2000, 85(15): 3161
doi: 10.1103/PhysRevLett.85.3161
23 X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, Highly unidirectional emission and ultralow-threshold lasing from onchip ultrahigh-Q microcavities, Adv. Mater. , 2012, 24(35): OP260
doi: 10.1002/adma.201201229
24 L. He, S. K. ?zdemir, and L. Yang, Whispering gallery microcavity lasers, Laser & Photonics Reviews , 2013, 7: 60
doi: 10.1002/lpor.201100032
25 B. B. Li, Y. F. Xiao, M. Y. Yan, W. R. Clements, and Q. Gong, Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity, Opt. Lett. , 2013, 38(11): 1802
doi: 10.1364/OL.38.001802
26 Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature , 2005, 435(7040): 325
doi: 10.1038/nature03569
27 H. Rokhsari and K. J. Vahala, Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics, Phys. Rev. Lett. , 2004, 92(25): 253905
doi: 10.1103/PhysRevLett.92.253905
28 H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, Ultralow- loss optical delay line on a silicon chip, Nat. Commun. , 2012, 3: 867
doi: 10.1038/ncomms1876
29 V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a silicon chip, Nature , 2004, 431(7012): 1081
doi: 10.1038/nature02921
30 J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics , 2009, 4(1): 46
doi: 10.1038/nphoton.2009.237
31 F. Vollmer and S. Arnold, Whispering-gallery-mode biosensing: Label-free detection down to single molecules, Nat.Methods , 2008, 5(7): 591
doi: 10.1038/nmeth.1221
32 X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator, Phys. Rev. A , 2011, 83(2): 023803
doi: 10.1103/PhysRevA.83.023803
33 F. Vollmer and L. Yang, Review Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices, Nanophotonics , 2012, 1(3-4): 267
34 L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, Detection of single nanoparticles and lentiviruses using microcavity resonance broadening, Adv. Mater. , 2013, pmid:10.1002/adma201302572" target="blank">
doi: 10.1002/adma201302572
pmid:10.1002/adma201302572" target="blank">
doi: 10.1002/adma201302572
35 A. N. Cleland and M. L. Roukes, A nanometre-scale mechanical electrometer, Nature , 1998, 392: 160
doi: 10.1038/32373
36 K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol. , 008, 3(9): 533
37 J. L. Arlett, E. B. Myers, and M. L. Roukes, Comparative advantages of mechanical biosensors, Nat. Nanotechnol. , 2011, 6(4): 203
doi: 10.1038/nnano.2011.44
38 U. Krishnamoorthy, G. R. III Olsson, M. Bogart, D. Baker, T. Carr, T. P. Swiler, and P. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sens. Actuators A Phys. , 2008, 145: 283
doi: 10.1016/j.sna.2008.03.017
39 M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
doi: 10.1017/CBO9780511813993
40 A. N. Cleland, Foundations of Nanomechanics: From Solid- State Theory to Device Applications, Springer-Verlag, 2003
41 C. Gardiner and P. Zoller, Quantum Noise, Springer, 2004
42 J. Rosenberg, Q. Lin, and O. Painter, Static and dynamic wavelength routing via the gradient optical force, Nat. Photonics , 2009, 3(8): 478
doi: 10.1038/nphoton.2009.137
43 B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, D. E. McClelland, and S. E. Whitcomb, Observation and characterization of an optical spring, Phys. Rev. A , 2004, 69(5): 051801
doi: 10.1103/PhysRevA.69.051801
44 A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Optical bistability in semiconductor microcavities, Phys. Rev.A , 2004, 69(2): 023809
doi: 10.1103/PhysRevA.69.023809
45 Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, Optical-force-induced bistability in nanomachined ring resonator systems, Appl. Phys. Lett. , 2012, 100(9): 093108
doi: 10.1063/1.3690955
46 G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, Controlling photonic structures using optical forces, Nature , 2009, 462(7273): 633
doi: 10.1038/nature08584
47 A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett. , 2006, 97(24): 243905
doi: 10.1103/PhysRevLett.97.243905
48 O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror, Nature , 2006, 444(7115): 71
doi: 10.1038/nature05244
49 Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. , 2013, 110(15): 153606
doi: 10.1103/PhysRevLett.110.153606
50 T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys.Rev. Lett. , 2005, 94(22): 223902
doi: 10.1103/PhysRevLett.94.223902
51 T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett. , 2005, 95(3): 033901
doi: 10.1103/PhysRevLett.95.033901
52 K. Zandi, B. Wong, J. Zou, R. V. Kruzelecky, W. Jamroz, and Y. A. Peter, In-plane silicon-on-insulator optical MEMS accelerometer using waveguide fabry-perot microcavity with silicon/air bragg mirrors, in: IEEE 23rd International Conference on Micro Electro Mechanical Systems, IEEE , 2010: 839-842
53 M. W. Pruessner, T. H. Stievater, J. B. Khurgin, and W. S. Rabinovich, Integrated waveguide-DBR microcavity optomechanical system, Opt. Express , 2011, 19(22): 21904
doi: 10.1364/OE.19.021904
54 B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, Ultra-compact Si-SiO2 microring resonator optical channel dropping filters, IEEE Photon. Technol. Lett. , 1998, 10(4): 549
doi: 10.1109/68.662590
55 F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, Ultra-compact high order ring resonator filters using ubmicron silicon photonic wires for on-chip optical interconnects, Opt. Express , 2007, 15(19): 11934
doi: 10.1364/OE.15.011934
56 W. H. P.Pernice, M. Li, and H. X. Tang, Optomechanical coupling in photonic crystal supported nanomechanical waveguides, Opt. Express , 2009, 17(15): 12424
doi: 10.1364/OE.17.012424
57 M. Li, W. H. P.Pernice, and H. X. Tang, Ultrahighfrequency nano-optomechanical resonators in slot waveguide ring cavities, Appl. Phys. Lett. , 2010, 97(18): 183110
doi: 10.1063/1.3513213
58 A. N. Oraevsky, Whispering-gallery waves, Quantum Electron. , 2002, 32(5): 377
doi: 10.1070/QE2002v032n05ABEH002205
59 A. B. Matsko and V. S. Ilchenko, Optical resonators with whispering-gallery modes-part I: basics, IEEE J. Sel. Top.Quantum Electron. , 2006, 12(1): 3
doi: 10.1109/JSTQE.2005.862952
60 G. Anetsberger, R. Rivi’ere, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Ultralow-dissipation optomechanical resonators on a chip, Nat. Photonics , 2008, 2(10): 627
doi: 10.1038/nphoton.2008.199
61 Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Mechanical oscillation and cooling actuated by the optical gradient force, Phys. Rev. Lett. , 2009, 103(10): 103601
doi: 10.1103/PhysRevLett.103.103601
62 X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, High-Q double-disk microcavities for cavity optomechanics, Opt. Express , 2009, 17(23): 20911
doi: 10.1364/OE.17.020911
63 Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, Coherent mixing of mechanical excitations in nano-optomechanical structures, Nat.Photonics , 2010, 4(4): 236
doi: 10.1038/nphoton.2010.5
64 S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, A silicon nitride microdisk resonator with a 40-nmthin horizontal air slot, Opt. Express , 2010, 18(11): 11209
doi: 10.1364/OE.18.011209
65 S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, Label-free optical biosensing using a horizontal airslot SiNx microdisk resonator, Opt. Express , 2010, 18(20): 20638
doi: 10.1364/OE.18.020638
66 J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E.Harris, Strong ispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature , 2008, 452(7183): 72
doi: 10.1038/nature06715
67 G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys. , 2009, 5(12): 909
doi: 10.1038/nphys1425
68 C. L. Zou, X. B. Zou, F. W. Sun, Z. F. Han, and G. C. Guo, Room-temperature steady-state optomechanical entanglement on a chip, Phys. Rev. A , 2011, 84(3): 032317
doi: 10.1103/PhysRevA.84.032317
69 E. Gavartin, P. Verlot, and T. J. Kippenberg, A hybrid onchip optomechanical transducer for ultrasensitive force measurements, Nat. Nanotechnol. , 2012, 7(8): 509
doi: 10.1038/nnano.2012.97
70 H. K. Li, Y. C. Liu, X. Yi, C. L. Zou, X. X. Ren, and Y. F. Xiao, Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling, Phys. Rev. A , 2012, 85(5): 053832
doi: 10.1103/PhysRevA.85.053832
71 J. Chan, M. Eichenfield, R. Camacho, and O. Painter, Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity, Opt. Express , 2009, 17(5): 3802
doi: 10.1364/OE.17.003802
72 M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature , 2009, 459(7246): 550
doi: 10.1038/nature08061
73 M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature , 2009, 462(7269): 78
doi: 10.1038/nature08524
74 M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs, Phys. Rev. Lett. , 2006, 97(2): 023903
doi: 10.1103/PhysRevLett.97.023903
75 X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity, Nano Lett. , 2012, 12(5): 2299
doi: 10.1021/nl300142t
76 G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, Brillouin cavity optomechanics with microfluidic devices, Nat. Commun. , 2013, 4:1994
doi: 10.1038/ncomms2994
77 V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, Enhancing optical gradient forces with metamaterials, Phys. Rev. Lett. , 2013, 110(5): 057401
doi: 10.1103/PhysRevLett.110.057401
78 K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator, Nano Lett. , 2011, 11(2): 791
doi: 10.1021/nl104018r
79 A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, A high-resolution microchip optomechanical accelerometer, Nat. Photonics , 2012, 6(11): 768
doi: 10.1038/nphoton.2012.245
80 M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators , Opt. Express , 2005, 13(20): 8286
doi: 10.1364/OPEX.13.008286
81 V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, Coupling and tunability of optical whispering-gallery modes: A basis for coordinate meter, Opt. Commun. , 1994, 107(1-2): 41
doi: 10.1016/0030-4018(94)90100-7
83 A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Cantilever-like micromechanical sensors., Rep. Prog. Phys. , 2011, 74(3): 036101
doi: 10.1088/0034-4885/74/3/036101
84 Y. Liu, H. Miao, V. Aksyuk, and K. Srinivasan, Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy, Opt. Express , 2012, 20(16): 18268
doi: 10.1364/OE.20.018268
85 G. I. Harris, D. L. McAuslan, T. M. Stace, A. C. Doherty, and W. P. Bowen, Minimum requirements for feedback enhanced force sensing, arXiv: 1303.1589, 2013
86 D. Woolf, P. C. Hui, E. Iwase, M. Khan, A. W. Rodriguez, P. Deotare, I. Bulu, S. G. Johnson, F. Capasso, and M. Loncar, Optomechanical and photothermal interactions in suspended photonic crystal membranes, Opt. Express , 2013, 21(6): 7258
doi: 10.1364/OE.21.007258
87 F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, Casimir forces and quantum electrodynamical torques: Physics and nanomechanics, IEEE J. Sel. Top. Quantum Electron. , 2007, 13(2): 400
doi: 10.1109/JSTQE.2007.893082
88 A. W. Rodriguez, F. Capasso, and S. G. Johnson, The Casimir effect in microstructured geometries, Nat. Photonics , 2011, 5(4): 211
doi: 10.1038/nphoton.2011.39
89 J. J. Li and K. D. Zhu, Nonlinear optical mass sensor with an optomechanical microresonator, Appl. Phys. Lett. , 2012, 101(14): 141905
doi: 10.1063/1.4757004
90 F. Liu and M. Hossein-Zadeh, Mass sensing with optomechanical oscillation, IEEE Sens. J. , 2013, 13(1): 146
doi: 10.1109/JSEN.2012.2217956
91 C. Gmachl, F. Capasso, E. Narimanov, J. U. N?ckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, High-power directional emission from microlasers with chaotic resonators, Science , 1998, 280(5369): 1556
doi: 10.1126/science.280.5369.1556
92 Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, From the cover: Whispering-gallery mode resonators for highly unidirectional laser action, Proc. Natl. Acad. Sci. USA , 2010, 107(52): 22407
doi: 10.1073/pnas.1015386107
93 C. L. Zou, F. J. Shu, F. W. Sun, Z. J. Gong, Z. F. Han, and G. C. Guo, Theory of free space coupling to high-Q whispering gallery modes, Opt. Express , 2013, 21(8): 9982
doi: 10.1364/OE.21.009982
94 B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, Microring resonator channel dropping filters, J. Lightwave Technol. , 1997, 15(6): 998
doi: 10.1109/50.588673
95 J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler, IEEE Photon. Technol. Lett. , 2000, 12(8): 1004
doi: 10.1109/68.867989
96 J. P. Laine, C. Tapalian, B. Little, and H. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler, Sens. Actuators A Phys. , 2001, 93(1): 1
doi: 10.1016/S0924-4247(01)00636-7
97 M. A. Perez and A. M. Shkel, Design and demonstration of a bulk micromachined Fabry-P’erot μg-resolution accelerometer, IEEE Sens. J. , 2007, 7(12): 1653
doi: 10.1109/JSEN.2007.909085
98 U. Krishnamoorthy, G. R. III Olsson, M. S. Bogart, D. W. Baker, T. P. Carr, T. P. Swiler, and P. J. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sens. Actuators A Phys. , 2008, 145-146: 283
doi: 10.1016/j.sna.2008.03.017
99 D. N. Hutchison and S. A. Bhave, Z-axis optomechanical accelerometer, in: IEEE 25th International Conference on Micro Electro Mechanical Systems, IEEE , 2012: 615-619
100 P. H. Kim, C. Doolin, B. D. Hauer, A. J. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, Nanoscale torsional optomechanics, Appl. Phys. Lett. , 2013, 102(5): 053102
doi: 10.1063/1.4789442
101 J. P. Davis, D. Vick, D. C. Fortin, J. A. J.Burgess, W. K. Hiebert, and M. R. Freeman, Nanotorsional resonator torque magnetometry, Appl. Phys. Lett. , 2010, 96(7): 072513
doi: 10.1063/1.3319502
102 S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett. , 2012, 108(12): 120801
doi: 10.1103/PhysRevLett.108.120801
103 S. Lin, E. Schonbrun, and K. Crozier, Optical manipulation with planar silicon microring resonators, Nano Lett. , 2010, 10(7): 2408
doi: 10.1021/nl100501d
104 H. Cai and A. W. Poon, Optical manipulation and transport of microparticles on silicon nitride microring-resonatorbased add-drop devices, Opt. Lett. , 2010, 35(17): 2855
doi: 10.1364/OL.35.002855
105 H. Cai and A. W. Poon, Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator, Opt. Lett. , 2011, 36(21): 4257
doi: 10.1364/OL.36.004257
106 V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Taking whispering gallery-mode single virus detection and sizing to the limit, Appl. Phys. Lett. , 2012, 101(4): 043704
doi: 10.1063/1.4739473
107 S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection, Appl. Phys. Lett. , 2011, 98(24): 243104
doi: 10.1063/1.3599584
108 M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity, J. Biophoton. , 2012, 5(8-9): 629
doi: 10.1002/jbio.201200040
109 A. H. J.Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides, Nature , 2009, 457(7225): 71
doi: 10.1038/nature07593
110 S. Lin and K. B. Crozier, Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles, Lab on a Chip , 2011, 11(23): 4047
doi: 10.1039/c1lc20574a
111 L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006
doi: 10.1017/CBO9780511813535
112 J. D. Jackson, Classical Electrodynamics, Wiley, 1998
113 J. P. Gordon, Radiation forces and momenta in dielectric media, Phys. Rev. A , 1973, 8(1): 14
doi: 10.1103/PhysRevA.8.14
114 A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. , 1986, 11(5): 288
doi: 10.1364/OL.11.000288
115 Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, High-Q exterior Whispering-Gallery modes in a metal-coated microresonator, Phys. Rev. Lett. , 2010, 105(15): 153902
doi: 10.1103/PhysRevLett.105.153902
116 Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator, Phys. Rev. A , 2012, 85(3): 031805
doi: 10.1103/PhysRevA.85.031805
117 L. Zhou, X. Sun, X. Li, and J. Chen, Miniature microring resonator sensor based on a hybrid plasmonic waveguide, Sensors , 2011, 11(12): 6856
doi: 10.3390/s110706856
118 Y. W. Hu, B. B. Li, Y. X. Liu, Y. F. Xiao, and Q. Gong, Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping, Opt. Commun. , 2013, 291: 380
doi: 10.1016/j.optcom.2012.11.024
119 F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. , 2007, 99(9): 093902
doi: 10.1103/PhysRevLett.99.093902
120 M. Ludwig and F. Marquardt, Quantum many-body dynamics in optomechanical arrays, Phys. Rev. Lett. , 2013, 111(7): 073603
doi: 10.1103/PhysRevLett.111.073603
121 M. A. Lemonde, N. Didier, and A. A. Clerk, Nonlinear interaction effects in a strongly driven optomechanical cavity, Phys. Rev. Lett. , 2013, 111(5): 053602
doi: 10.1103/PhysRevLett.111.053602
122 K. B鴕kje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett. , 2013, 111(5): 053603
doi: 10.1103/PhysRevLett.111.053603
123 Y. C. Liu, Y. F. Xiao, Y. L. Chen, X. C. Yu, and Q. Gong, Parametric down-conversion and polariton pair generation in optomechanical systems, Phys. Rev. Lett. , 2013, 111(8): 083601
doi: 10.1103/PhysRevLett.111.083601
124 J. Capmany and D. Novak, Microwave photonics combines two worlds, Nat. Photonics , 2007, 1(6): 319
doi: 10.1038/nphoton.2007.89
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed