Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (5): 509-515   https://doi.org/10.1007/s11467-013-0386-9
  RESEARCH ARTICLE 本期目录
Modifying optical properties of ZnO nanowires via strain-gradient
Modifying optical properties of ZnO nanowires via strain-gradient
Xue-Wen Fu1, Qiang Fu1, Liang-Zhi Kou2, Xin-Li Zhu1, Rui Zhu1, Jun Xu1, Zhi-Min Liao1, Qing Zhao1, Wan-Lin Guo2(), Da-Peng Yu1()
1. State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, Peking University, Beijing 100871, China; 2. State Key Laboratory for Mechanics and Control of Mechanical Structures, and MOE Key Laboratory of Intelligent Nano Materials and Devices, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(439 KB)   HTML
Abstract

We conduct systematical cathodoluminescence study on red-shift of near-band-edge emission energy in elastic bent ZnO nanowires with diameters within the exciton diffusion length (~ 200 nm) in liquid nitrogen temperature (81 K). By charactering the emission spectra of the nanowires with different local curvatures, we find a linear relationship between strain-gradient and the red-shift of near-band-edge emission photon energy, an elastic strain-gradient effect in semiconductor similar to the famous flexoelectric effect in liquid crystals. Our results provide a new route to understand the inhomogeneous strain effect on the energy bands and optical properties of semiconductors and should be useful for designing advanced nano-optoelectronic devices.

Key wordsstrain-gradient    ZnO nanowire    cathodoluminescene    exciton energy    energy bands
收稿日期: 2013-08-08      出版日期: 2013-10-01
Corresponding Author(s): Guo Wan-Lin,Email:wlguo@nuaa.edu.cn; Yu Da-Peng,Email:yudp@pku.edu.cn   
 引用本文:   
. Modifying optical properties of ZnO nanowires via strain-gradient[J]. Frontiers of Physics, 2013, 8(5): 509-515.
Xue-Wen Fu, Qiang Fu, Liang-Zhi Kou, Xin-Li Zhu, Rui Zhu, Jun Xu, Zhi-Min Liao, Qing Zhao, Wan-Lin Guo, Da-Peng Yu. Modifying optical properties of ZnO nanowires via strain-gradient. Front. Phys. , 2013, 8(5): 509-515.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0386-9
https://academic.hep.com.cn/fop/CN/Y2013/V8/I5/509
1 V. M. Pereira and A. H. Castro Neto, Strain engineering of graphene’s electronic structure, Phys. Rev. Lett. , 2009, 103(4): 046801
doi: 10.1103/PhysRevLett.103.046801
2 A. Maiti, Carbon nanotubes: Bandgap engineering with strain, Nat. Mater. , 2003, 2(7): 440
doi: 10.1038/nmat928
3 C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Size dependence of Young’s modulus in ZnO nanowires, Phys. Rev. Lett. , 2006, 96(7): 075505
doi: 10.1103/PhysRevLett.96.075505
4 S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Selfpowered nanowire devices, Nat. Nanotechnol. , 2010, 5(5): 366
doi: 10.1038/nnano.2010.46
5 K. Kash, B. P. Van der Gaag, D. D. Mahoney, A. S. Gozdz, L. T. Florez, J. P. Harbison, and M. Sturge, Observation of quantum confinement by strain gradients, Phys. Rev. Lett. , 1991, 67(10): 1326
doi: 10.1103/PhysRevLett.67.1326
6 B. A. Bernevig and S.-C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. , 2006, 96(10): 106802
doi: 10.1103/PhysRevLett.96.106802
7 J. Harden, B. Mbarga, N. éber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jákli, Giant flexoelectricity of bentcore nematic liquid crystals, Phys. Rev. Lett. , 2006, 97(15): 157802
doi: 10.1103/PhysRevLett.97.157802
8 A. K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline dielectrics, Phys. Rev. B , 1986, 34(8): 5883
doi: 10.1103/PhysRevB.34.5883
9 M. Leong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, Silicon device scaling to the sub-10-nm regime, Science , 2004, 306(5704): 2057
doi: 10.1126/science.1100731
10 J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L.Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams, Nature Nanotech. , 2009, 4(11): 732
doi: 10.1038/nnano.2009.266
11 ü. ?zgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morko竎, A comprehensive review of ZnO materials and devices, J. Appl. Phys. , 2005, 98(4): 041301
doi: 10.1063/1.1992666
12 Y. Qin, X. Wang, and Z. L. Wang, Microfibre-nanowire hybrid structure for energy scavenging, Nature , 2008, 451(7180): 809
doi: 10.1038/nature06601
13 Z. L. Wang and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science , 2006, 312(5771): 242
doi: 10.1126/science.1124005
14 X. B. Han, L. Z. Kou, X. L. Lang, H. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Electronic and mechanical coupling in bent ZnO nanowires, Adv. Mater. , 2009, 21(48): 4937
doi: 10.1002/adma.200900956
15 X. B. Han, L. Z. Kou, X. L. Lang, H. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, Strain-gradient effect on energy bands in bent ZnO microwires, Adv. Mater. , 2012, 24(34): 4707
doi: 10.1002/adma.201104372
16 J. Y. Gao, X. Z. Zhang, Y. H. Sun, Q. Zhao, and D. P. Yu, Compensation mechanism in N-doped ZnO nanowires, Nanotechnology , 2010, 21(24): 245703
doi: 10.1088/0957-4484/21/24/245703
17 J. Xu, L. Chen, L. S. Yu, H. Liang, B. S. Zhang, and K. M. Lau, Cathodoluminescence study of InGaN/GaN quantumwell LED structures grown on a Si substrate, J. Electron. Mater. , 2007, 36(9): 1144
doi: 10.1007/s11664-007-0193-6
18 J. Yoo, G. C. Yi, and L. S. Dang, Probing exciton diffusion in semiconductors using emiconductor-nanorod quantum structures, Small , 2008, 4(4): 467
doi: 10.1002/smll.200701293
19 R. L. Weiher and W. C. Tait, Mixed-mode excitons in the photoluminescence of zinc oxide-reabsorption and exciton diffusion, Phys. Rev. B , 1972, 5(2): 623
doi: 10.1103/PhysRevB.5.623
20 J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. And Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter , 2002, 14(11): 2745
doi: 10.1088/0953-8984/14/11/302
21 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. , 1996, 77(18): 3865
doi: 10.1103/PhysRevLett.77.3865
22 C. Li, W. Guo, Y. Kong, and H. Gao, First-principles study on ZnO nanoclusters with hexagonal prism structures, Appl. Phys. Lett. , 2007, 90(22): 223102
doi: 10.1063/1.2743934
23 L. Kou, C. Li, Z. Zhang, and W. Guo, Electric-field- and hydrogen-passivation-induced band modulations in armchair ZnO nanoribbons, J. Phys. Chem. C , 2010, 114(2): 1326
doi: 10.1021/jp909584j
24 R. Resta, Towards a bulk theory of flexoelectricity, Phys. Rev. Lett. , 2010, 105(12): 127601
doi: 10.1103/PhysRevLett.105.127601
25 Y. Gu, I. L. Kuskovsky, M. Yin, S. O’Brien, and G. F. Neumark, Quantum confinement in ZnO nanorods, Appl. Phys. Lett. , 2004, 85(17): 3833
doi: 10.1063/1.1811797
26 S. Achour, A. Harabi, and N. Tabet, Cathodoluminescence dependence upon irradiation time, Mater. Sci. Eng. B , 1996, 42(1-3): 289
doi: 10.1016/S0921-5107(96)01723-0
27 M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, Piezoelectric nanogenerator using p-type ZnO nanowire arrays, Nano Lett., 2009, 9(3): 1223
doi: 10.1021/nl900115y
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed