Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (4): 519-522   https://doi.org/10.1007/s11467-014-0412-6
  RESEARCH ARTICLE 本期目录
Dimensions of receptor-ligand complex and the optimal radius of endocytosed virus-like particle
Yan-Hui Liu1,2,3(),Ying-Bing Chen2,Wei Mao2,Lin Hu2,Lin-Hong Deng4,5,Hou-Qiang Xu1,*()
1. Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
2. Soft Condensed Matter Laboratory, College of Science, Guizhou University, Guiyang 550025, China
3. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
4. Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
5. Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
 全文: PDF(196 KB)  
Abstract

Recent experiments have pointed out that cellular uptake is strongly dependent on the physical dimensions of endocytosed nanoparticles and the optimal radius of endocytosed virus-like particle coated by transferrin is around 50 nm. As the same time, the dimensions of receptor-ligand complex have strong effects on the size-dependent exclusion of proteins in cell environments. Inspired by these experimental results, a continuum elastic model is constructed to resolve the relationship between the dimensions of receptor-ligand complex and the optimal radius of endocytosed virus-like particle. These results demonstrate that the optimal radius of endocytosed virus-like particle depends on the dimensions of receptor-ligand complex and the dimension of receptor-ligand complex reduces the depletion zone.

Key wordscellular uptake    depletion effects    dimension of receptor-ligand complex    elasticity theory
收稿日期: 2013-12-06      出版日期: 2014-08-26
Corresponding Author(s): Hou-Qiang Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(4): 519-522.
Yan-Hui Liu, Ying-Bing Chen, Wei Mao, Lin Hu, Lin-Hong Deng, Hou-Qiang Xu. Dimensions of receptor-ligand complex and the optimal radius of endocytosed virus-like particle. Front. Phys. , 2014, 9(4): 519-522.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0412-6
https://academic.hep.com.cn/fop/CN/Y2014/V9/I4/519
1 A. E. Nel, L. M?dler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater., 2009, 8(7): 543
doi: 10.1038/nmat2442
2 M. Lakadamyali, M. J. Rust, and X. W. Zhuang, Endocytosis of influenza viruses, Microbes Infect., 1996, 6: 334
3 S. B. Sieczkarski and G. R. Whittaker, Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis, J. Virol., 2002, 76(20): 10455
doi: 10.1128/JVI.76.20.10455-10464.2002
4 H. Gao, W. Shi, and L. B. Freund, Mechanics of receptormediated endocytosis, Proc. Natl. Acad. Sci. USA, 2005, 102(27): 9469
doi: 10.1073/pnas.0503879102
5 H. Yuan, J. Li, G. Bao, and S. Zhang, Variable nanoparticlecell adhesion strength regulates cellular uptake, Phys. Rev. Lett., 2010, 105(13): 138101
doi: 10.1103/PhysRevLett.105.138101
6 S. X. Sun and D. Wirtz, Mechanics of enveloped virus entry into host cells, Biophys. J., 2006, 90(1): L10
doi: 10.1529/biophysj.105.074203
7 B. D. Chithrani and W. C. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes, Nano Lett., 2007, 7(6): 1542
doi: 10.1021/nl070363y
8 B. D. Chithrani, A. A. Ghazani, and W. C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett., 2006, 6(4): 662
doi: 10.1021/nl052396o
9 J. M. Alakoskela, A. L. Koner, D. Rudnicka, K. K?hler, M. Howarth, and D. M. Davis, Mechanisms for size-dependent protein segregation at immune synapses assessed with molecular rulers, Biophys. J., 2011, 100(12): 2865
doi: 10.1016/j.bpj.2011.05.013
10 J. R. James, R. D. Vale, Biophysical mechanism of T-cell receptor triggering in a reconstituted system, Nature, 2012, 487(7405): 64
11 P. Nelson and B. Physics, Energy, Information and Life, New York and Basingstoke: W. H. Freeman, 2007
12 Z.-C. Ouyang, J.-X. Liu, and Y.-Z. Xie, Geometric methods in the elastic theory of membranes in liquid crystal phase, Singapore: World Scientific, 1999
doi: 10.1142/9789812816856
13 L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Oxford: Pergamon, 1986
14 G. I. Bell, Models for the specific adhesion of cells to cells, Science, 1978, 200(4342): 618
doi: 10.1126/science.347575
15 P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, Transferrin-mediated gold nanoparticle cellular uptake, Bioconjugate Chem., 2005, 16(3): 494
doi: 10.1021/bc049775d
16 M. P. Desai, V. Labhasetwar, E. Walter, R. J. Levy, and G. L. Amidon, The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent, Pharm. Res., 1997, 14(11): 1568
doi: 10.1023/A:1012126301290
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed