The influence of the use of the generalized Hermite polynomial on the Hermite-based lattice Boltzmann (LB) construction approach, lattice sets, the thermal weights, moments and the equilibrium distribution function (EDF) are addressed. A new moment system is proposed. The theoretical possibility to obtain a unique high-order Hermite-based singel relaxation time LB model capable to exactly match some first hydrodynamic moments thermally i) on-Cartesian lattice, ii) with thermal weights in the EDF, iii) whilst the highest possible hydrodynamic moments that are exactly matched are obtained with the shortest on-Cartesian lattice sets with some fixed real-valued temperatures, is also analyzed.
G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice gas automata, Phys. Rev. Lett., 1988, 61(20): 2332 https://doi.org/10.1103/PhysRevLett.61.2332
H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, 1992, 45(8): R5339 https://doi.org/10.1103/PhysRevA.45.R5339
6
Y. H. Qian, D. d’Humiéres, and P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 1992, 17(6): 479 https://doi.org/10.1209/0295-5075/17/6/001
7
S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
8
D. Hänel, Molekulare Gasdynamik: Einführung in die kinetische Theorie der Gase und Lattice–Boltzmann– Methoden, Berlin: Springer, 2004
9
Z. Guo and C. Shu, Lattice Boltzmann Method and its Applications in Engineering, Singapore: World Scientific, 2013 https://doi.org/10.1142/8806
P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 1954, 94(3): 511 https://doi.org/10.1103/PhysRev.94.511
12
P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 1954, 7: 507
R. Machado, Numerical simulations of surface reaction in porous media with lattice Boltzmann, Chem. Eng. Sci., 2012, 69(1): 628 https://doi.org/10.1016/j.ces.2011.11.037
16
R. Machado, On pressure and corner boundary conditions with two lattice Boltzmann construction approaches, Math. Comput. Simul., 2012, 84: 26 https://doi.org/10.1016/j.matcom.2012.08.002
17
S. Succi, Lattice Boltzmann at all-scales: From turbulence to DNA translocation, distinguished lecture, University of Leicester, Leicester, UK, 2006-November-15
18
R. Brownlee, A. Gorban, and J. Levesley, Nonequilibrium entropy limiters in lattice Boltzmann methods, Physica A, 2008, 387(2−3): 385 https://doi.org/10.1016/j.physa.2007.09.031
19
X. He and L. S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 1997, 56(6): 6811 https://doi.org/10.1103/PhysRevE.56.6811
20
X. Shan and X. He, Discretization of the velocity space in the solution of the Boltzmann equation, Phys. Rev. Lett., 1998, 80(1): 65 https://doi.org/10.1103/PhysRevLett.80.65
21
P. C. Philippi, L. A. Jr Hegele, L. O. E. Dos Santos, and R. Surmas, From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models, Phys. Rev. E, 2006, 73(5): 056702 https://doi.org/10.1103/PhysRevE.73.056702
22
X. Shan, X.-F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation, J. Fluid Mech., 2006, 550: 413 https://doi.org/10.1017/S0022112005008153
D. N. Siebert, L. A. Hegele, and P. C. Philippi, Thermal lattice Boltzmann in two dimensions, Int. J. Mod. Phys. C, 2007, 18(04): 546 https://doi.org/10.1142/S0129183107010784
25
X. Nie, X. Shan, and H. Chen, Thermal lattice Boltzmann model for gases with internal degrees of freedom, Phys. Rev. E, 2008, 77 (3): 035701(R) https://doi.org/10.1103/PhysRevE.77.035701
26
S. H. Kim, H. Pitsch, and I. D. Boyd, Accuracy of higherorder lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. Comput. Phys., 2008, 227(19): 8655 https://doi.org/10.1016/j.jcp.2008.06.012
27
G. -H. Tang, Y. -H. Zhang, and D. R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E, 2008, 77(4): 046701 https://doi.org/10.1103/PhysRevE.77.046701
J. Meng and Y. Zhang, Gauss–Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E, 2011, 83(3): 036704 https://doi.org/10.1103/PhysRevE.83.036704
30
S. S. Chikatamarla and I. V. Karlin, Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett., 2006, 97(19): 190601 https://doi.org/10.1103/PhysRevLett.97.190601
31
S. S. Chikatamarla and I. V. Karlin, Complete Galilean invariant lattice Boltzmann models, Comput. Phys. Commun., 2008, 179(1−3): 140 https://doi.org/10.1016/j.cpc.2008.01.037
32
S. S. Chikatamarla and I. V. Karlin, Lattices for the lattice Boltzmann method, Phys. Rev. E, 2009, 79(4): 046701− Note: There is a typo in Eqs. (9) and (C3), where the last summand in W0 should be+1 and not+36.
33
G. R. McNamara, A. L. Garcia, and B. J. Alder, Stabilization of thermal lattice Boltzmann models, J. Stat. Phys., 1995, 81(1−2): 395 https://doi.org/10.1007/BF02179986
34
N. Cao, S. Chen, S. Jin, and D. Martínez, Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. Rev. E, 1997, 55(1): R21 https://doi.org/10.1103/PhysRevE.55.R21
35
M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E, 2003, 67(3): 036306 https://doi.org/10.1103/PhysRevE.67.036306
36
M. Watari and M. Tsutahara, Possibility of constructing a multispeed Bhatnagar–Gross–Krook thermal model of the lattice Boltzmann method, Phys. Rev. E, 2004, 70(1): 016703 https://doi.org/10.1103/PhysRevE.70.016703
37
T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 2004, 69(3): 035701 https://doi.org/10.1103/PhysRevE.69.035701
38
T. Kataoka and M. Tsutahara, Lattice Boltzmann method for the compressible Euler equations, Phys. Rev. E, 2004, 69(5): 056702 https://doi.org/10.1103/PhysRevE.69.056702
39
K. Qu, C. Shu, and Y. T. Chew, Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number, Phys. Rev. E, 2007, 75(3): 036706 https://doi.org/10.1103/PhysRevE.75.036706
40
A. Nejat and V. Abdollahi, A critical study of the compressible lattice Boltzmann methods for riemann problem, J. Sci. Comput., 2013, 54(1): 1 https://doi.org/10.1007/s10915-012-9596-5
41
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Multiplerelaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett., 2010, 90(5): 54003 https://doi.org/10.1209/0295-5075/90/54003
42
Y. Gan, A. Xu, G. Zhang, and Y. Li, Lattice Boltzmann study on Kelvin–Helmholtz instability: Roles of velocity and density gradients, Phys. Rev. E, 2011, 83(5): 056704 https://doi.org/10.1103/PhysRevE.83.056704
43
Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization, Phys. Rev. E, 2011, 84(4): 046715 https://doi.org/10.1103/PhysRevE.84.046715
44
A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., 2012, 7(5): 582 https://doi.org/10.1007/s11467-012-0269-5
45
B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys., 2013, 8(1): 94 https://doi.org/10.1007/s11467-013-0286-z
46
Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett., 2013, 103(2): 24003 https://doi.org/10.1209/0295-5075/103/24003
47
P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 2003, 68(3): 036706 https://doi.org/10.1103/PhysRevE.68.036706
48
D. d’Humiéres, Generalized lattice Boltzmann equations, In: Rarefied gas dynamics: Theory and simulations (Eds. B. D. Shizgal and D. P. Weaver), Prog. Astronaut. Aeronaut., 1992, 159: 450
49
C.Z. Xu and F. C. Lau, Load Balancing in Parallel Computers: Theory and Practice, Berlin: Springer, 1996
50
H. Chen, O. Filippova, J. Hoch, K. Molvig, R. Shock, C. Teixeira, and R. Zhang, Grid refinement in lattice Boltzmann methods based on volumetric formulation, Physica A, 2006, 362(1): 158 https://doi.org/10.1016/j.physa.2005.09.036
51
G. Tang, Y. Zhang, and D. R. Emerson, Private communication, 2008
52
I. V. Karlin, A. Ferrante, and H. C. Öttinger, Perfect entropy functions of the Lattice Boltzmann method, Europhys. Lett., 1999, 47(2): 182 https://doi.org/10.1209/epl/i1999-00370-1
53
H. Chen, I. Goldhirsch, and S. A. Orszag, Discrete rotational symmetry, moment isotropy, and higher order lattice Boltzmann models, J. Sci. Comput., 2008, 34(1): 87 https://doi.org/10.1007/s10915-007-9159-3
54
R. Rubinstein and L. S. Luo, Theory of the lattice Boltzmann equation: Symmetry properties of discrete velocity sets, Phys. Rev. E, 2008, 77(3): 036709 https://doi.org/10.1103/PhysRevE.77.036709
55
H. Bateman, Higher Transcendental Functions, Vols. I, II, III, New York: McGraw-Hill, 1953
56
G. Szeg, Orthogonal Polynomials, American Mathematics Society 23, 1939
57
T. S. Chihara, Generalized Hermite Polynomials, Ph.D. thesis, Purdue University, 1955
58
D. J. Dickinson and S. Warsi, On a generalized Hermite polynomial and a problem of Carlitz, Boll. Unione Mat. Ital., 1963, 18: 256
59
S. C. M. Dutta and K. L. More, On a class of generalized Hermite polynomials, Bull. Inst. Math. Acad. Sinica., 1975, 3: 377
60
M. Rosenblum, Generalized Hermite Polynomials and Boselike oscillator calculus, Oper. Theory Adv. Appl., 1994, 73: 369
61
J. Burkardt, Generalized Gauss-Hermite quadrature rules, 2010. See references therein.
62
J. Kautsky and S. Elhay, Calculation of the weights of interpolatory quadratures, Numer. Math., 1982, 40(3): 407 https://doi.org/10.1007/BF01396453
C. A. Charalambides, Enumerative Combinatorics, Boca Raton: Chapman and Hall, 2002
65
N. Prasianakis, S. Chikatamarla, I. Karlin, S. Ansumali, and K. Boulouchos, Entropic lattice Boltzmann method for simulation of thermal flows, Math. Comput. Simul., 2006, 72(2−6): 179
66
L. Landau and E. Lifshitz, Course of Theoretical Physics: Physical Kinetics, Vol. 10, New York: Pergamon, 1981
67
J. Meng and Y. Zhang, Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows, J. Comput. Phys., 2011, 230(3): 835 https://doi.org/10.1016/j.jcp.2010.10.023
Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties, Oxford: Oxford University Press, 2002
70
Y.-H. Qian and Y. Zhou, Complete Galilean-invariant lattice BGK models for the Navier–Stokes equation, Europhys Lett., 1998, 42(4): 359 https://doi.org/10.1209/epl/i1998-00255-3
71
P. J. Dellar, Lattice and discrete Boltzmann equations for fully compressible flow, in: Computational Fluid and Solid Mechanics, edited by K. J. Bathe, Elsevier, 2005, pp. 632−635
72
G. R. McNamara, A. L. Garcia, and B. J. Alder, A hydrodynamically correct thermal lattice Boltzmann model, J. Stat. Phys., 1997, 87(5−6): 1111 https://doi.org/10.1007/BF02181274
73
D. N. Siebert, L. A. Jr Hegele, and P. C. Philippi, Lattice Boltzmann equation linear stability analysis: Thermal and athermal models, Phys. Rev. E, 2008, 77(2): 026707 https://doi.org/10.1103/PhysRevE.77.026707
74
R. A. Brownlee, A. N. Gorban, and J. Levesley, Stability and stabilization of the lattice Boltzmann method, Phys. Rev. E, 2007, 75(3): 036711 https://doi.org/10.1103/PhysRevE.75.036711
S. S. Chikatamarla, S. Ansumali, and I. V. Karlin, Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett., 2006, 97(1): 010201 https://doi.org/10.1103/PhysRevLett.97.010201
77
I. V. Karlin, S. S. Chikatamarla, and S. Ansumali, Elements of the lattice Boltzmann method II: Kinetics and hydrodynamics in one dimension, Commun. Comput. Phys., 2007, 2(2): 196
78
X. He, S. Chen, and G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 1998, 146(1): 282 https://doi.org/10.1006/jcph.1998.6057
79
P. C. Philippi, J. L. A. Jr Hegele, R. Surmas, D. N. Siebert, and L. O. E. dos Santos, From the Boltzmann to the lattice-Boltzmann equation: Beyond BGK collision models, Int. J. Mod. Phys. C, 2007, 18(04): 556 https://doi.org/10.1142/S0129183107010796
80
L. -S. Luo, Three myths in the lattice Boltzmann method, ICMMES, 2007-July-16
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge: Cambridge University Press, 2009, seventh printing with corrections Ed.
86
H. C. Öttinger, Beyond Equilibrium Thermodynamics, New Jersey: John Wiley & Sons, 2005
87
P. Asinari and I. V. Karlin, Generalized Maxwell state and H theorem for computing fluid flows using the lattice Boltzmann method, Phys. Rev. E, 2009, 79(3): 036703 https://doi.org/10.1103/PhysRevE.79.036703
88
W. P. Yudistiawan, S. K. Kwak, D. V. Patil, and S. Ansumali, Higher-order Galilean-invariant lattice Boltzmann model for microflows: Single-component gas, Phys. Rev. E, 2010, 82(4): 046701 https://doi.org/10.1103/PhysRevE.82.046701