Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (4): 490-510   https://doi.org/10.1007/s11467-014-0417-1
  本期目录
On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models
Raúl Machado()
Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
 全文: PDF(697 KB)  
Abstract

The influence of the use of the generalized Hermite polynomial on the Hermite-based lattice Boltzmann (LB) construction approach, lattice sets, the thermal weights, moments and the equilibrium distribution function (EDF) are addressed. A new moment system is proposed. The theoretical possibility to obtain a unique high-order Hermite-based singel relaxation time LB model capable to exactly match some first hydrodynamic moments thermally i) on-Cartesian lattice, ii) with thermal weights in the EDF, iii) whilst the highest possible hydrodynamic moments that are exactly matched are obtained with the shortest on-Cartesian lattice sets with some fixed real-valued temperatures, is also analyzed.

Key wordslattice Boltzmann    fluid dynamics    kinetic theory    distribution function
收稿日期: 2013-08-21      出版日期: 2014-08-26
Corresponding Author(s): Raúl Machado   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(4): 490-510.
Raúl Machado. On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models. Front. Phys. , 2014, 9(4): 490-510.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0417-1
https://academic.hep.com.cn/fop/CN/Y2014/V9/I4/490
1 G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice gas automata, Phys. Rev. Lett., 1988, 61(20): 2332
https://doi.org/10.1103/PhysRevLett.61.2332
2 F. J. Higuera and J. Jiménez, Boltzmann approach to lattice gas simulations, Europhys. Lett., 1989, 9(7): 663
https://doi.org/10.1209/0295-5075/9/7/009
3 F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett., 1989, 9(4): 345
https://doi.org/10.1209/0295-5075/9/4/008
4 J. M. V. A. Koelman, A simple lattice Boltzmann scheme for Navier–Stokes fluid flow, Europhys. Lett., 1991, 15(6): 603
https://doi.org/10.1209/0295-5075/15/6/007
5 H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, 1992, 45(8): R5339
https://doi.org/10.1103/PhysRevA.45.R5339
6 Y. H. Qian, D. d’Humiéres, and P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 1992, 17(6): 479
https://doi.org/10.1209/0295-5075/17/6/001
7 S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
8 D. Hänel, Molekulare Gasdynamik: Einführung in die kinetische Theorie der Gase und Lattice–Boltzmann– Methoden, Berlin: Springer, 2004
9 Z. Guo and C. Shu, Lattice Boltzmann Method and its Applications in Engineering, Singapore: World Scientific, 2013
https://doi.org/10.1142/8806
10 X. He and L.-S. Luo, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 1997, 55(6): R6333
https://doi.org/10.1103/PhysRevE.55.R6333
11 P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 1954, 94(3): 511
https://doi.org/10.1103/PhysRev.94.511
12 P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 1954, 7: 507
13 X. Shan, Lattice Boltzmann in micro-and nano-flow simulations, IMA J. Appl. Math., 2011, 76(5): 650
https://doi.org/10.1093/imamat/hxr009
14 H. Chen and X. Shan, Fundamental conditions for N-thorder accurate lattice Boltzmann models, Physica D, 2008, 237(14−17): 2003
https://doi.org/10.1016/j.physd.2007.11.010
15 R. Machado, Numerical simulations of surface reaction in porous media with lattice Boltzmann, Chem. Eng. Sci., 2012, 69(1): 628
https://doi.org/10.1016/j.ces.2011.11.037
16 R. Machado, On pressure and corner boundary conditions with two lattice Boltzmann construction approaches, Math. Comput. Simul., 2012, 84: 26
https://doi.org/10.1016/j.matcom.2012.08.002
17 S. Succi, Lattice Boltzmann at all-scales: From turbulence to DNA translocation, distinguished lecture, University of Leicester, Leicester, UK, 2006-November-15
18 R. Brownlee, A. Gorban, and J. Levesley, Nonequilibrium entropy limiters in lattice Boltzmann methods, Physica A, 2008, 387(2−3): 385
https://doi.org/10.1016/j.physa.2007.09.031
19 X. He and L. S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 1997, 56(6): 6811
https://doi.org/10.1103/PhysRevE.56.6811
20 X. Shan and X. He, Discretization of the velocity space in the solution of the Boltzmann equation, Phys. Rev. Lett., 1998, 80(1): 65
https://doi.org/10.1103/PhysRevLett.80.65
21 P. C. Philippi, L. A. Jr Hegele, L. O. E. Dos Santos, and R. Surmas, From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models, Phys. Rev. E, 2006, 73(5): 056702
https://doi.org/10.1103/PhysRevE.73.056702
22 X. Shan, X.-F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation, J. Fluid Mech., 2006, 550: 413
https://doi.org/10.1017/S0022112005008153
23 X. Shan and H. Chen, A general multiple-relaxation-time Boltzmann collision model, Int. J. Mod. Phys. C, 2007, 18(4): 635
https://doi.org/10.1142/S0129183107010887
24 D. N. Siebert, L. A. Hegele, and P. C. Philippi, Thermal lattice Boltzmann in two dimensions, Int. J. Mod. Phys. C, 2007, 18(04): 546
https://doi.org/10.1142/S0129183107010784
25 X. Nie, X. Shan, and H. Chen, Thermal lattice Boltzmann model for gases with internal degrees of freedom, Phys. Rev. E, 2008, 77 (3): 035701(R)
https://doi.org/10.1103/PhysRevE.77.035701
26 S. H. Kim, H. Pitsch, and I. D. Boyd, Accuracy of higherorder lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. Comput. Phys., 2008, 227(19): 8655
https://doi.org/10.1016/j.jcp.2008.06.012
27 G. -H. Tang, Y. -H. Zhang, and D. R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E, 2008, 77(4): 046701
https://doi.org/10.1103/PhysRevE.77.046701
28 X. Shan, General solution of lattices for Cartesian lattice Bhatanagar–Gross–Krook models, Phys. Rev. E, 2010, 81(3): 036702
https://doi.org/10.1103/PhysRevE.81.036702
29 J. Meng and Y. Zhang, Gauss–Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E, 2011, 83(3): 036704
https://doi.org/10.1103/PhysRevE.83.036704
30 S. S. Chikatamarla and I. V. Karlin, Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett., 2006, 97(19): 190601
https://doi.org/10.1103/PhysRevLett.97.190601
31 S. S. Chikatamarla and I. V. Karlin, Complete Galilean invariant lattice Boltzmann models, Comput. Phys. Commun., 2008, 179(1−3): 140
https://doi.org/10.1016/j.cpc.2008.01.037
32 S. S. Chikatamarla and I. V. Karlin, Lattices for the lattice Boltzmann method, Phys. Rev. E, 2009, 79(4): 046701− Note: There is a typo in Eqs. (9) and (C3), where the last summand in W0 should be+1 and not+36.
33 G. R. McNamara, A. L. Garcia, and B. J. Alder, Stabilization of thermal lattice Boltzmann models, J. Stat. Phys., 1995, 81(1−2): 395
https://doi.org/10.1007/BF02179986
34 N. Cao, S. Chen, S. Jin, and D. Martínez, Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. Rev. E, 1997, 55(1): R21
https://doi.org/10.1103/PhysRevE.55.R21
35 M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E, 2003, 67(3): 036306
https://doi.org/10.1103/PhysRevE.67.036306
36 M. Watari and M. Tsutahara, Possibility of constructing a multispeed Bhatnagar–Gross–Krook thermal model of the lattice Boltzmann method, Phys. Rev. E, 2004, 70(1): 016703
https://doi.org/10.1103/PhysRevE.70.016703
37 T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 2004, 69(3): 035701
https://doi.org/10.1103/PhysRevE.69.035701
38 T. Kataoka and M. Tsutahara, Lattice Boltzmann method for the compressible Euler equations, Phys. Rev. E, 2004, 69(5): 056702
https://doi.org/10.1103/PhysRevE.69.056702
39 K. Qu, C. Shu, and Y. T. Chew, Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number, Phys. Rev. E, 2007, 75(3): 036706
https://doi.org/10.1103/PhysRevE.75.036706
40 A. Nejat and V. Abdollahi, A critical study of the compressible lattice Boltzmann methods for riemann problem, J. Sci. Comput., 2013, 54(1): 1
https://doi.org/10.1007/s10915-012-9596-5
41 F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Multiplerelaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett., 2010, 90(5): 54003
https://doi.org/10.1209/0295-5075/90/54003
42 Y. Gan, A. Xu, G. Zhang, and Y. Li, Lattice Boltzmann study on Kelvin–Helmholtz instability: Roles of velocity and density gradients, Phys. Rev. E, 2011, 83(5): 056704
https://doi.org/10.1103/PhysRevE.83.056704
43 Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization, Phys. Rev. E, 2011, 84(4): 046715
https://doi.org/10.1103/PhysRevE.84.046715
44 A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., 2012, 7(5): 582
https://doi.org/10.1007/s11467-012-0269-5
45 B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys., 2013, 8(1): 94
https://doi.org/10.1007/s11467-013-0286-z
46 Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett., 2013, 103(2): 24003
https://doi.org/10.1209/0295-5075/103/24003
47 P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 2003, 68(3): 036706
https://doi.org/10.1103/PhysRevE.68.036706
48 D. d’Humiéres, Generalized lattice Boltzmann equations, In: Rarefied gas dynamics: Theory and simulations (Eds. B. D. Shizgal and D. P. Weaver), Prog. Astronaut. Aeronaut., 1992, 159: 450
49 C.Z. Xu and F. C. Lau, Load Balancing in Parallel Computers: Theory and Practice, Berlin: Springer, 1996
50 H. Chen, O. Filippova, J. Hoch, K. Molvig, R. Shock, C. Teixeira, and R. Zhang, Grid refinement in lattice Boltzmann methods based on volumetric formulation, Physica A, 2006, 362(1): 158
https://doi.org/10.1016/j.physa.2005.09.036
51 G. Tang, Y. Zhang, and D. R. Emerson, Private communication, 2008
52 I. V. Karlin, A. Ferrante, and H. C. Öttinger, Perfect entropy functions of the Lattice Boltzmann method, Europhys. Lett., 1999, 47(2): 182
https://doi.org/10.1209/epl/i1999-00370-1
53 H. Chen, I. Goldhirsch, and S. A. Orszag, Discrete rotational symmetry, moment isotropy, and higher order lattice Boltzmann models, J. Sci. Comput., 2008, 34(1): 87
https://doi.org/10.1007/s10915-007-9159-3
54 R. Rubinstein and L. S. Luo, Theory of the lattice Boltzmann equation: Symmetry properties of discrete velocity sets, Phys. Rev. E, 2008, 77(3): 036709
https://doi.org/10.1103/PhysRevE.77.036709
55 H. Bateman, Higher Transcendental Functions, Vols. I, II, III, New York: McGraw-Hill, 1953
56 G. Szeg, Orthogonal Polynomials, American Mathematics Society 23, 1939
57 T. S. Chihara, Generalized Hermite Polynomials, Ph.D. thesis, Purdue University, 1955
58 D. J. Dickinson and S. Warsi, On a generalized Hermite polynomial and a problem of Carlitz, Boll. Unione Mat. Ital., 1963, 18: 256
59 S. C. M. Dutta and K. L. More, On a class of generalized Hermite polynomials, Bull. Inst. Math. Acad. Sinica., 1975, 3: 377
60 M. Rosenblum, Generalized Hermite Polynomials and Boselike oscillator calculus, Oper. Theory Adv. Appl., 1994, 73: 369
61 J. Burkardt, Generalized Gauss-Hermite quadrature rules, 2010. See references therein.
62 J. Kautsky and S. Elhay, Calculation of the weights of interpolatory quadratures, Numer. Math., 1982, 40(3): 407
https://doi.org/10.1007/BF01396453
63 L. Pochhammer, Über hypergeometrische Funktionen n-ter Ordnung, J. Reine Angew. Math., 1870, 71: 316
https://doi.org/10.1515/crll.1870.71.316
64 C. A. Charalambides, Enumerative Combinatorics, Boca Raton: Chapman and Hall, 2002
65 N. Prasianakis, S. Chikatamarla, I. Karlin, S. Ansumali, and K. Boulouchos, Entropic lattice Boltzmann method for simulation of thermal flows, Math. Comput. Simul., 2006, 72(2−6): 179
66 L. Landau and E. Lifshitz, Course of Theoretical Physics: Physical Kinetics, Vol. 10, New York: Pergamon, 1981
67 J. Meng and Y. Zhang, Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows, J. Comput. Phys., 2011, 230(3): 835
https://doi.org/10.1016/j.jcp.2010.10.023
68 P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Berlin: Springer, 1997
https://doi.org/10.1007/978-3-642-33483-2
69 Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties, Oxford: Oxford University Press, 2002
70 Y.-H. Qian and Y. Zhou, Complete Galilean-invariant lattice BGK models for the Navier–Stokes equation, Europhys Lett., 1998, 42(4): 359
https://doi.org/10.1209/epl/i1998-00255-3
71 P. J. Dellar, Lattice and discrete Boltzmann equations for fully compressible flow, in: Computational Fluid and Solid Mechanics, edited by K. J. Bathe, Elsevier, 2005, pp. 632−635
72 G. R. McNamara, A. L. Garcia, and B. J. Alder, A hydrodynamically correct thermal lattice Boltzmann model, J. Stat. Phys., 1997, 87(5−6): 1111
https://doi.org/10.1007/BF02181274
73 D. N. Siebert, L. A. Jr Hegele, and P. C. Philippi, Lattice Boltzmann equation linear stability analysis: Thermal and athermal models, Phys. Rev. E, 2008, 77(2): 026707
https://doi.org/10.1103/PhysRevE.77.026707
74 R. A. Brownlee, A. N. Gorban, and J. Levesley, Stability and stabilization of the lattice Boltzmann method, Phys. Rev. E, 2007, 75(3): 036711
https://doi.org/10.1103/PhysRevE.75.036711
75 X. B. Nie, X. Shan, and H. Chen, Galilean invariance of lattice Boltzmann models, Europhys. Lett., 2008, 81(3): 34005
https://doi.org/10.1209/0295-5075/81/34005
76 S. S. Chikatamarla, S. Ansumali, and I. V. Karlin, Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett., 2006, 97(1): 010201
https://doi.org/10.1103/PhysRevLett.97.010201
77 I. V. Karlin, S. S. Chikatamarla, and S. Ansumali, Elements of the lattice Boltzmann method II: Kinetics and hydrodynamics in one dimension, Commun. Comput. Phys., 2007, 2(2): 196
78 X. He, S. Chen, and G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 1998, 146(1): 282
https://doi.org/10.1006/jcph.1998.6057
79 P. C. Philippi, J. L. A. Jr Hegele, R. Surmas, D. N. Siebert, and L. O. E. dos Santos, From the Boltzmann to the lattice-Boltzmann equation: Beyond BGK collision models, Int. J. Mod. Phys. C, 2007, 18(04): 556
https://doi.org/10.1142/S0129183107010796
80 L. -S. Luo, Three myths in the lattice Boltzmann method, ICMMES, 2007-July-16
81 R. Machado, On the moment system and a flexible Prandtl number, Mod. Phys. Lett. B, 2014, 28(6): 1450048
https://doi.org/10.1142/S0217984914500481
82 S. Succi, Lattice Boltzmann across scales: From turbulence to DNA translocation, Eur. Phys. J. B, 2008, 64(3−4): 471
https://doi.org/10.1140/epjb/e2008-00067-3
83 A. J. Wagner, An H-theorem for the lattice Boltzmann approach to hydrodynamics, Europhys. Lett., 1998, 44(2): 144
https://doi.org/10.1209/epl/i1998-00448-8
84 W. A. Yong and L. S. Luo, Nonexistence of H theorem for some lattice Boltzmann models, J. Stat. Phys., 2005, 121(1−2): 91
https://doi.org/10.1007/s10955-005-5958-9
85 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge: Cambridge University Press, 2009, seventh printing with corrections Ed.
86 H. C. Öttinger, Beyond Equilibrium Thermodynamics, New Jersey: John Wiley & Sons, 2005
87 P. Asinari and I. V. Karlin, Generalized Maxwell state and H theorem for computing fluid flows using the lattice Boltzmann method, Phys. Rev. E, 2009, 79(3): 036703
https://doi.org/10.1103/PhysRevE.79.036703
88 W. P. Yudistiawan, S. K. Kwak, D. V. Patil, and S. Ansumali, Higher-order Galilean-invariant lattice Boltzmann model for microflows: Single-component gas, Phys. Rev. E, 2010, 82(4): 046701
https://doi.org/10.1103/PhysRevE.82.046701
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed