Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (5): 587-597   https://doi.org/10.1007/s11467-014-0421-5
  REVIEW ARTICLE 本期目录
Quantum information processing and metrology with color centers in diamonds
Jing-Wei Zhou,Peng-Fei Wang,Fa-Zhan Shi,Pu Huang,Xi Kong,Xiang-Kun Xu,Qi Zhang,Zi-Xiang Wang,Xing Rong,Jiang-Feng Du()
Hefei National Laboratory for Physics Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(678 KB)  
Abstract

The Nitrogen–Vacancy (NV) center is becoming a promising qubit for quantum information processing. The defect has a long coherence time at room temperature and it allows spin state initialized and read out by laser and manipulated by microwave pulses. It has been utilized as a ultra sensitive probe for magnetic fields and remote spins as well. Here, we review the recent progresses in experimental demonstrations based on NV centers. We first introduce our work on implementation of the Deutsch–Jozsa algorithm with a single electronic spin in diamond. Then the quantum nature of the bath around the center spin is revealed and continuous wave dynamical decoupling has been demonstrated. By applying dynamical decoupling, a multi-pass quantum metrology protocol is realized to enhance phase estimation. In the final, we demonstrated NV center can be regarded as a ultra-sensitive sensor spin to implement nuclear magnetic resonance (NMR) imaging at nanoscale.

Key wordsquantum information processing and metrology    Nitrogen–Vacancy center    phase estimation    dynamical decoupling    single spin detection
收稿日期: 2013-07-19      出版日期: 2014-10-15
Corresponding Author(s): Jiang-Feng Du   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(5): 587-597.
Jing-Wei Zhou, Peng-Fei Wang, Fa-Zhan Shi, Pu Huang, Xi Kong, Xiang-Kun Xu, Qi Zhang, Zi-Xiang Wang, Xing Rong, Jiang-Feng Du. Quantum information processing and metrology with color centers in diamonds. Front. Phys. , 2014, 9(5): 587-597.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0421-5
https://academic.hep.com.cn/fop/CN/Y2014/V9/I5/587
1 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science, 2005, 309(5744): 2180
https://doi.org/10.1126/science.1116955
2 B. E. Kane, A silicon-based nuclear spin quantum computer, Nature, 1998, 393(6681): 133
https://doi.org/10.1038/30156
3 J. Wrachtrup and F. Jelezko, Processing quantum information in diamond, J. Phys.: Condens. Matter, 2006, 18(21): S807
https://doi.org/10.1088/0953-8984/18/21/S08
4 J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, Quantum computing with defects, Proc. Natl. Acad. Sci. USA, 2010, 107(19): 8513
https://doi.org/10.1073/pnas.1003052107
5 V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett., 2006, 96(1): 010401
https://doi.org/10.1103/PhysRevLett.96.010401
6 F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate, Phys. Rev. Lett., 2004, 93(13): 130501
https://doi.org/10.1103/PhysRevLett.93.130501
7 F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Observation of coherent oscillations in a single electron spin, Phys. Rev. Lett., 2004, 92(7): 076401
https://doi.org/10.1103/PhysRevLett.92.076401
8 P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, Multipartite entanglement among single spins in diamond, Science, 2008, 320(5881): 1326
https://doi.org/10.1126/science.1157233
9 F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, and J. Wrachtrup, Room-temperature entanglement between single defect spins in diamond, Nat. Phys., 2013, 9(3): 139
https://doi.org/10.1038/nphys2545
10 G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Ultralong spin coherence time in isotopically engineered diamond, Nat. Mater., 2009, 8(5): 383
https://doi.org/10.1038/nmat2420
11 G. Fuchs, G. Burkard, P. Klimov, and D. Awschalom, A quantum memory intrinsic to single nitrogen–vacancy centres in diamond, Nat. Phys., 2011, 7(10): 789
https://doi.org/10.1038/nphys2026
12 P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R. Hemmer, J. Wrachtrup, and F. Jelezko, Single-shot readout of a single nuclear spin, Science, 2010, 329(5991): 542
https://doi.org/10.1126/science.1189075
13 B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, Spin-light coherence for single-spin measurement and control in diamond, Science, 2010, 330(6008): 1212
https://doi.org/10.1126/science.1196436
14 L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. Alkemade, and R. Hanson, High-fidelity projective read-out of a solid-state spin quantum register, Nature, 2011, 477(7366): 574
https://doi.org/10.1038/nature10401
15 F. Shi, X. Rong, N. Xu, Y.Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, Room-temperature implementation of the Deutsch–Jozsa algorithm with a single electronic spin in diamond, Phys. Rev. Lett., 2010, 105(4): 040504
https://doi.org/10.1103/PhysRevLett.105.040504
16 T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, Decoherence-protected quantum gates for a hybrid solid-state spin register, Nature, 2012, 484(7392): 82
https://doi.org/10.1038/nature10900
17 T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, Room-temperature coherent coupling of single spins in diamond, Nat. Phys., 2006, 2(6): 408
https://doi.org/10.1038/nphys318
18 E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature, 2010, 466(7307): 730
https://doi.org/10.1038/nature09256
19 H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, Heralded entanglement between solid-state qubits separated by three metres, Nature, 2013, 497(7447): 86
https://doi.org/10.1038/nature12016
20 M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, Quantum register based on individual electronic and nuclear spin qubits in diamond, Science, 2007, 316(5829): 1312
https://doi.org/10.1126/science.1139831
21 P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, D. J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, and J. Wrachtrup, Quantum register based on coupled electron spins in a room-temperature solid, Nat. Phys., 2010, 6(4): 249
https://doi.org/10.1038/nphys1536
22 X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. i. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, and K. Semba, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature, 2011, 478(7368): 221
https://doi.org/10.1038/nature10462
23 Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve, and P. Bertet, Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble, Phys. Rev. Lett., 2011, 107: 220501
https://doi.org/10.1103/PhysRevLett.107.220501
24 P. Rabl, P. Cappellaro, M. V. G. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, Strong magnetic coupling between an electronic spin qubit and a mechanical resonator, Phys. Rev. B, 2009, 79(4): 041302
https://doi.org/10.1103/PhysRevB.79.041302
25 S. Kolkowitz, A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl, J. G. E. Harris, and M. D. Lukin, Coherent sensing of a mechanical resonator with a single-spin qubit, Science, 2012, 335(6076): 1603
https://doi.org/10.1126/science.1216821
26 J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, High-sensitivity diamond magnetometer with nanoscale resolution, Nat. Phys., 2008, 4(10): 810
https://doi.org/10.1038/nphys1075
27 G. Balasubramanian, I. Y. Chan, R. Kolesov, M. AlHmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, Nanoscale imaging magnetometry with diamond spins under ambient conditions, Nature, 2008, 455(7213): 648
https://doi.org/10.1038/nature07278
28 J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, Nanoscale magnetic sensing with an individual electronic spin in diamond, Nature, 2008, 455(7213): 644
https://doi.org/10.1038/nature07279
29 F. Dolde, H. Fedder, M. W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Electric-field sensing using single diamond spins, Nat. Phys., 2011, 7(6): 459
https://doi.org/10.1038/nphys1969
30 D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond, Proc. Natl. Acad. Sci. USA, 2013, 110(21): 8417
https://doi.org/10.1073/pnas.1306825110
31 G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, Violation of a temporal bell inequality for single spins in a diamond defect center, Phys. Rev. Lett., 2011, 107(9): 090401
https://doi.org/10.1103/PhysRevLett.107.090401
32 R. E. George, L. M. Robledo, O. J. E. Maroney, M. S. Blok, H. Bernien, M. L. Markham, D. J. Twitchen, J. J. L. Morton, G. A. D. Briggs, and R. Hanson, Opening up three quantum boxes causes classically undetectable wavefunction collapse, Proc. Natl. Acad. Sci. USA, 2013, 110(10): 3777
https://doi.org/10.1073/pnas.1208374110
33 A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J. P. Poizat, and P. Grangier, Single photon quantum cryptography, Phys. Rev. Lett., 2002, 89(18): 187901
https://doi.org/10.1103/PhysRevLett.89.187901
34 R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stohr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Wave–particle duality of single surface plasmon polaritons, Nat. Phys., 2009, 5(7): 470
https://doi.org/10.1038/nphys1278
35 S. W. Hell, Far-field optical nanoscopy, Science, 2007, 316(5828): 1153
https://doi.org/10.1126/science.1137395
36 S. W. Hell and M. Kroug, Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit, Appl. Phys. B, 1995, 60(5): 495
https://doi.org/10.1007/BF01081333
37 P. Maurer, J. Maze, P. Stanwix, L. Jiang, A. Gorshkov, A. A. Zibrov, B. Harke, J. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, Far-field optical imaging and manipulation of individual spins with nanoscale resolution, Nat. Phys., 2010, 6(11): 912
https://doi.org/10.1038/nphys1774
38 E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, STED microscopy reveals crystal colour centres with nanometric resolution, Nat. Photonics, 2009, 3(3): 144
https://doi.org/10.1038/nphoton.2009.2
39 J. Harrison, M. J. Sellars, and N. B. Manson, Optical spin polarisation of the N-V centre in diamond, J. Lumin., 2004, 107(1-4): 245
https://doi.org/10.1016/j.jlumin.2003.12.020
40 N. B. Manson, J. P. Harrison, and M. J. Sellars, Nitrogenvacancy center in diamond: Model of the electronic structure and associated dynamics, Phys. Rev. B, 2006, 74: 104303
https://doi.org/10.1103/PhysRevB.74.104303
41 R. Hanson, O. Gywat, and D. D. Awschalom, Roomtemperature manipulation and decoherence of a single spin in diamond, Phys. Rev. B, 2006, 74(16): 161203
https://doi.org/10.1103/PhysRevB.74.161203
42 R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, Coherent dynamics of a single spin interacting with an adjustable spin bath, Science, 2008, 320(5874): 352
https://doi.org/10.1126/science.1155400
43 L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, Coherent dynamics of coupled electron and nuclear spin qubits in diamond, Science, 2006, 314(5797): 281
https://doi.org/10.1126/science.1131871
44 G. de Lange, T. van der Sar, M. S. Blok, Z. H. Wang, V. V. Dobrovitski, and R. Hanson, Controlling the quantum dynamics of a mesoscopic spin bath in diamond, arXiv: 1104.4648v1<?Pub Caret?>, 2011
45 F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J. P. Boudou, A. Krueger, and J. Wrachtrup, Dynamics of diamond nanoparticles in solution and cells, Nano Lett., 2007, 7(12): 3588
https://doi.org/10.1021/nl0716303
46 C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, Characterization and application of single fluorescent nanodiamonds as cellular biomarkers., Proc. Natl. Acad. Sci. USA, 2007, 104(3): 727
https://doi.org/10.1073/pnas.0605409104
47 D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A, 1992, 439(1907): 553
48 R. de Sousa and S. Das Sarma, Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots, Phys. Rev. B, 2003, 68: 115322
https://doi.org/10.1103/PhysRevB.68.115322
49 W. M. Witzel, R. de Sousa, and S. Das Sarma, Quantum theory of spectral diffusion induced electron spin decoherence, Phys. Rev. B, 2005, 72: 161306(R)
https://doi.org/10.1103/PhysRevB.72.161306
50 W. Yao, R.B. Liu, and L. J. Sham, Theory of electron spin decoherence by interacting nuclear spins in a quantum dot, Phys. Rev. B, 2006, 74 (19): 195301
https://doi.org/10.1103/PhysRevB.74.195301
51 S. K. Saikin, W. Yao, and L. J. Sham, Single-electron spin decoherence by nuclear spin bath: Linked-cluster expansion approach, Phys. Rev. B, 2007, 75: 125314
https://doi.org/10.1103/PhysRevB.75.125314
52 P. W. Anderson, A mathematical model for the narrowing of spectral lines by exchange or motion, J. Phys. Soc. Jpn., 1954, 9(3): 316
https://doi.org/10.1143/JPSJ.9.316
53 R. Kubo, Note on the stochastic theory of resonance absorption, J. Phys. Soc. Jpn., 1954, 9(6): 935
https://doi.org/10.1143/JPSJ.9.935
54 P. R. Berman and R. G. Brewer, Modified optical Bloch equations for solids, Phys. Rev. A, 1985, 32(5): 2784
https://doi.org/10.1103/PhysRevA.32.2784
55 R. F. Loring and S. Mukamel, Unified theory of photon echoes: The passage from inhomogeneous to homogeneous line broadening, Chem. Phys. Lett., 1985, 114(4): 426
https://doi.org/10.1016/0009-2614(85)85113-7
56 N. Zhao, Z. Y. Wang, and R. B. Liu, Anomalous decoherence effect in a quantum bath, Phys. Rev. Lett., 2011, 106 (21): 217205
https://doi.org/10.1103/PhysRevLett.106.217205
57 P. Huang, X. Kong, N. Zhao, F. Z. Shi, P. F.Wang, X. Rong, R. B. Liu, and J. F. Du, Observation of an anomalous decoherence effect in a quantum bath at room temperature, Nature Communications, 2011, 2: 570
https://doi.org/10.1038/ncomms1579
58 G. de Lange, Z. H. Wang, D. Riste, V. V. Dobrovitski, and R. Hanson, Universal dynamical decoupling of a single solidstate spin from a spin bath, Science, 2010, 330 (6000): 60
https://doi.org/10.1126/science.1192739
59 F. Reinhard, F. Z. Shi, N. Zhao, F. Rempp, B. Naydenov, J. Meijer, L. T. Hall, L. Hollenberg, J. F. Du, R. B. Liu, and J. Wrachtrup, Tuning a spin bath through the quantumclassical transition, Phys. Rev. Lett., 2012, 108(20): 200402
https://doi.org/10.1103/PhysRevLett.108.200402
60 W. H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D, 1981, 24(6): 1516
https://doi.org/10.1103/PhysRevD.24.1516
61 H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, and A. Yacoby, Dephasing time of GaAs electronspin qubits coupled to a nuclear bath exceeding 200 μs, Nat. Phys., 2011, 7(2): 109
https://doi.org/10.1038/nphys1856
62 X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, Coherence-protected quantum gate by continuous dynamical decoupling in diamond, Phys. Rev. Lett., 2012, 109: 070502
https://doi.org/10.1103/PhysRevLett.109.070502
63 N. Timoney, I. Baumgart, M. Johanning, A. F. Varon, M. B. Plenio, A. Retzker, and C. Wunderlich, Quantum gates and memory using microwave-dressed states, Nature, 2011, 476(7359): 185
https://doi.org/10.1038/nature10319
64 J. M. Cai, B. Naydenov, R. Pfeiffer, L. P. McGuinness, K. D. Jahnke, F. Jelezko, M. B. Plenio, and A. Retzker, Robust dynamical decoupling with concatenated continuous driving, New J. Phys., 2012, 14(11): 113023
https://doi.org/10.1088/1367-2630/14/11/113023
65 J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, Preserving electron spin coherence in solids by optimal dynamical decoupling, Nature, 2009, 461(7268): 1265
https://doi.org/10.1038/nature08470
66 J. A. Jones, S. D. Karlen, J. Fitzsimons, A. Ardavan, S. C. Benjamin, G. A. D. Briggs, and J. J. L. Morton, Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states, Science, 2009, 324(5931): 1166
https://doi.org/10.1126/science.1170730
67 D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, Creation of a six-atom ‘Schr?dinger cat’ state, Nature, 2005, 438(7068): 639
https://doi.org/10.1038/nature04251
68 T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, Beating the standard quantum limit with fourentangled photons, Science, 2007, 316(5825): 726
https://doi.org/10.1126/science.1138007
69 C. Gross, T. Zibold, E. Nicklas, J. Estve, and M. K. Oberthaler, Nonlinear atom interferometer surpasses classical precision limit, Nature, 2010, 464(7292): 1165
https://doi.org/10.1038/nature08919
70 G. Y. Xiang, B. L. Higgins, D. W. Berry, H. M. Wiseman, and G. J. Pryde, Entanglement-enhanced measurement of a completely unknown optical phase, Nat. Photonics, 2011, 5(1): 43
https://doi.org/10.1038/nphoton.2010.268
71 B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Entanglement-free Heisenberg-limited phase estimation, Nature, 2007, 450(7168): 393
https://doi.org/10.1038/nature06257
72 X. Rong, P. Huang, X. Kong, X. Xu, F. Shi, Y. Wang, and J. Du, Enhanced phase estimation by implementing dynamical decoupling in a multi-pass quantum metrology protocol, Europhys. Lett., 2011, 95(6): 60005
https://doi.org/10.1209/0295-5075/95/60005
73 F. Z. Shi, Q. Zhang, B. Naydenov, F. Jelezko, J. F. Du, F. Reinhard, and J. Wrachtrup, Quantum logic readout and cooling of a single dark electron spin, Phys. Rev. B, 2013, 87: 195414
https://doi.org/10.1103/PhysRevB.87.195414
74 T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, Nuclear magnetic resonance spectroscopy on a (5-nanometer) 3 sample volume, Science, 2013, 339(6119): 561
https://doi.org/10.1126/science.1231675
75 C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, Nanoscale magnetic resonance imaging, Proc. Natl. Acad. Sci. USA, 2009, 106(5): 1313
https://doi.org/10.1073/pnas.0812068106
76 W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, Room temperature coherent control of defect spin qubits in silicon carbide, Nature, 2011, 479(7371): 84
https://doi.org/10.1038/nature10562
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed