Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (6): 671-672   https://doi.org/10.1007/s11467-014-0458-5
  本期目录
Quantum description of transport phenomena: Recent progress
Ji Wei(季威)1(), Xu Hong-Qi(徐洪起)2,3(), Guo Hong(郭鸿)4()
1. Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing 100872, China
2. Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
3. Division of Solid State Physics, Lund University, Box 118, S-22100 Lund, Sweden
4. Centre for the Physics of Materials and Department of Physics, McGill University, Montreal, QC, Canada H3A 2T8
 全文: PDF(111 KB)  
收稿日期: 2014-11-27      出版日期: 2014-12-24
Corresponding Author(s): Xu Hong-Qi(徐洪起)   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(6): 671-672.
Ji Wei(季威), Xu Hong-Qi(徐洪起), Guo Hong(郭鸿). Quantum description of transport phenomena: Recent progress. Front. Phys. , 2014, 9(6): 671-672.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0458-5
https://academic.hep.com.cn/fop/CN/Y2014/V9/I6/671
1 Supriyo Datta, Lessons from Nanoelectronics: A New Perspective on Transport, Singapore: World Scientific Publishing Company, 2012, and the references therein.
2 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
3 For more details, please visit eemd official site
4 J.-S. Wang, B. Kumar Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys., 2014, 9(6): 673
https://doi.org/10.1007/s11467-013-0340-x
5 Y. Kwok, Y. Zhang, and G.-H. Chen, Time-dependent density functional theory for quantum transport, Front. Phys., 2014, 9(6): 698
https://doi.org/10.1007/s11467-013-0361-5
6 K. Palotás, G. Mándi, and W. A. Hofer, Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy, Front. Phys., 2014, 9(6): 711
https://doi.org/10.1007/s11467-013-0354-4
7 X.-F. Li and Y. Luo, Conductivity of carbon-based molecular junctions from ab-initio methods, Front. Phys., 2014, 9(6): 748
https://doi.org/10.1007/s11467-014-0424-2
8 Z.-Y. Ning, J.-S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys., 2014, 9(6): 780
https://doi.org/10.1007/s11467-014-0453-x
9 W. Zhu, A.-M. Guo, and Q.-F. Sun, Electronic transport through tetrahedron-structured DNA-like system, Front. Phys., 2014, 9(6): 774
https://doi.org/10.1007/s11467-013-0353-5
10 Y.-B. Hu, Y.-H. Zhao, and X.-F. Wang, A computational investigation of topological insulator Bi2Se3 film, Front. Phys., 2014, 9(6): 760
https://doi.org/10.1007/s11467-014-0441-1
11 X.-T. Jia and K. Xia, Electric and thermo spin transfer torques in Fe/Vacuum/Fe tunnel junction, Front. Phys., 2014, 9(6): 768
https://doi.org/10.1007/s11467-013-0375-z
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed