Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (3): 100504   https://doi.org/10.1007/s11467-015-0466-0
  RESEARCH ARTICLE 本期目录
Experimental system of coupled map lattices
Yu-Han Ma,Lan-Qing Huang,Chu-Min Sun,Xiao-Wen Li()
Department of Physics, Beijing Normal University, Beijing 100875, China
 全文: PDF(4884 KB)  
Abstract

We design an optical feedback loop system consisting of a liquid-crystal spatial light modulator (SLM), a lens, polarizers, a CCD camera, and a computer. The system images every SLM pixel onto one camera pixel. The light intensity on the camera pixel shows a nonlinear relationship with the phase shift applied by the SLM. Every pixel behaves as a nonlinear map, and we can control the interaction of pixels. Therefore, this feedback loop system can be regarded as a spatially extended system. This experimental coupled map has variable dimensions, which can be up to 512 by 512. The system can be used to study high-dimensional problems that computer simulations cannot handle.

Key wordscoupled map lattices    photoelectric feedback loop
收稿日期: 2014-12-15      出版日期: 2015-06-11
Corresponding Author(s): Xiao-Wen Li   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(3): 100504.
Yu-Han Ma, Lan-Qing Huang, Chu-Min Sun, Xiao-Wen Li. Experimental system of coupled map lattices. Front. Phys. , 2015, 10(3): 100504.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0466-0
https://academic.hep.com.cn/fop/CN/Y2015/V10/I3/100504
1 K. Kaneko, Collapse of Tori and Genesis of Chaos in Dissipative Systems, Vol. 33, World Scientific, 1986
https://doi.org/10.1142/0175
2 K. Kaneko, Lyapunov analysis and information flow in coupled map lattices, Physica D 23(1), 436 (1986)
https://doi.org/10.1016/0167-2789(86)90149-1
3 K. Kaneko, Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermittency, Physica D 34(1), 1 (1989)
https://doi.org/10.1016/0167-2789(89)90227-3
4 K. Kaneko, Spatiotemporal chaos in one-and twodimensional coupled map lattices, Physica D 37(1), 60 (1989)
https://doi.org/10.1016/0167-2789(89)90117-6
5 G. Hu and Z. L. Qu, Controlling spatiotemporal chaos in coupled map lattice systems, Phys. Rev. Lett. 72(1), 68 (1994)
https://doi.org/10.1103/PhysRevLett.72.68
6 P. M. Gade and C.-K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E 62(5), 6409 (2000)
https://doi.org/10.1103/PhysRevE.62.6409
7 O. N. Bj?rnstad, R. A. Ims, and X. Lambin, Spatial population dynamics: analyzing patterns and processes of population synchrony, Trends in Ecology & Evolution 14(11), 427 (1999)
https://doi.org/10.1016/S0169-5347(99)01677-8
8 J. Garcia-Ojalvo and R. Roy, Spatiotemporal communication with synchronized optical chaos, Phys. Rev. Lett. 86(22), 5204 (2001)
https://doi.org/10.1103/PhysRevLett.86.5204
9 H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series, Phys. Lett. A 185(1), 77 (1994)
https://doi.org/10.1016/0375-9601(94)90991-1
10 L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Communications 5, 4079 (2014)
https://doi.org/10.1038/ncomms5079
11 S. Liu and M. Zhan, Clustering versus non-clustering phase synchronizations, Chaos 24, 013104 (2014)
https://doi.org/10.1063/1.4861685
12 M. Zhan, S. Liu, and Z. He, Matching rules for collective behaviors on complex networks: Optimal configurations for vibration frequencies of networked harmonic oscillators, PloS ONE 8(12), e82161 (2013)
https://doi.org/10.1371/journal.pone.0082161
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed