Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (3): 100505   https://doi.org/10.1007/s11467-015-0475-z
  RESEARCH ARTICLE 本期目录
Shuttle-run synchronization in mobile ad hoc networks
Sheng-Fei Ma1,Hong-Jie Bi1,Yong Zou1,2,Zong-Hua Liu1,2,Shu-Guang Guan1,2,*()
1. Department of Physics, East China Normal University, Shanghai 200241, China
2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(633 KB)  
Abstract

In this work, we study the collective dynamics of phase oscillators in a mobile ad hoc network whose topology changes dynamically. As the network size or the communication radius of individual oscillators increases, the topology of the ad hoc network first undergoes percolation, forming a giant cluster, and then gradually achieves global connectivity. It is shown that oscillator mobility generally enhances the coherence in such networks. Interestingly, we find a new type of phase synchronization/clustering, in which the phases of the oscillators are distributed in a certain narrow range, while the instantaneous frequencies change signs frequently, leading to shuttle-run-like motion of the oscillators in phase space. We conduct a theoretical analysis to explain the mechanism of this synchronization and obtain the critical transition point.

Key wordssynchronization    phase transition    ad hoc network
收稿日期: 2015-02-12      出版日期: 2015-06-11
Corresponding Author(s): Shu-Guang Guan   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(3): 100505.
Sheng-Fei Ma, Hong-Jie Bi, Yong Zou, Zong-Hua Liu, Shu-Guang Guan. Shuttle-run synchronization in mobile ad hoc networks. Front. Phys. , 2015, 10(3): 100505.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0475-z
https://academic.hep.com.cn/fop/CN/Y2015/V10/I3/100505
1 C. E. Perkins, Ad Hoc Networking, New York: Addison-Wesley, 2000
2 T. Camp, J. Boleng, and V. Davies, A survey of mobility models for ad hoc network research, Wireless Commun. Mobile Comput. 2(5), 483 (2002)
https://doi.org/10.1002/wcm.72
3 S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4-5), 175 (2006)
https://doi.org/10.1016/j.physrep.2005.10.009
4 S. Liu, Z. W. He, and M. Zhan, Firing rates of coupled noisy excitable elements, Front. Phys. 9(1), 120 (2014)
https://doi.org/10.1007/s11467-013-0365-1
5 Y. Zhang and W. H. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
https://doi.org/10.1007/s11467-014-0426-0
6 P. Ke and Z. G. Zheng, Dynamics of rotator chain with dissipative boundary, Front. Phys. 9(4), 511 (2014)
https://doi.org/10.1007/s11467-014-0427-z
7 F. Sivrikaya and B. Yener, Time synchronization in sensor networks: A survey, IEEE Netw. 18(4), 45 (2004)
https://doi.org/10.1109/MNET.2004.1316761
8 C. Thiemann, M. Treiber, and A. Kesting, Longitudinal hopping in intervehicle communication: Theory and simulations on modeled and empirical trajectory data, Phys. Rev. E 78(3), 036102 (2008)
https://doi.org/10.1103/PhysRevE.78.036102
9 Z. Liu, Effect of mobility in partially occupied complex networks, Phys. Rev. E 81(1), 016110 (2010)
https://doi.org/10.1103/PhysRevE.81.016110
10 N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Synchronization in networks of mobile oscillators, Phys. Rev. E 83(2), 025101 (2011) (R)
https://doi.org/10.1103/PhysRevE.83.025101
11 M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Synchronization of moving chaotic agents, Phys. Rev. Lett. 100(4), 044102 (2008)
https://doi.org/10.1103/PhysRevLett.100.044102
12 L. Wang, C. P. Zhu, and Z. M. Gu, Scaling of critical connectivity of mobile ad hoc networks, Phys. Rev. E 78(6), 066107 (2008)
https://doi.org/10.1103/PhysRevE.78.066107
13 Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, New York: Springer, 1984
https://doi.org/10.1007/978-3-642-69689-3
14 S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143, 1 (2000)
https://doi.org/10.1016/S0167-2789(00)00094-4
15 W. Krause, I. Glauche, R. Sollacher, and M. Greiner, Impact of network structure on the capacity of wireless multihop ad hoc communication, Physica A 338(3-4), 633 (2004)
https://doi.org/10.1016/j.physa.2004.03.013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed